期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于双标签集的标签匹配集成学习算法
1
作者 张丹普 王莉莉 +1 位作者 付忠良 李昕 《计算机应用》 CSCD 北大核心 2014年第9期2577-2580,共4页
当标识示例的两个标签分别来源于两个标签集时,这种多标签分类问题称之为标签匹配问题,目前还没有针对标签匹配问题的学习算法。尽管可以用传统的多标签分类学习算法来解决标签匹配问题,但显然标签匹配问题有其自身特殊性。通过对标签... 当标识示例的两个标签分别来源于两个标签集时,这种多标签分类问题称之为标签匹配问题,目前还没有针对标签匹配问题的学习算法。尽管可以用传统的多标签分类学习算法来解决标签匹配问题,但显然标签匹配问题有其自身特殊性。通过对标签匹配问题进行深入的研究,在连续AdaBoost(real Adaptive Boosting)算法的基础上,基于整体优化的思想,采用算法适应的方法,提出了基于双标签集的标签匹配集成学习算法,该算法能够较好地学习到标签匹配规律从而完成标签匹配。实验结果表明,与传统的多标签学习算法用于解决标签匹配问题相比,提出的新算法不仅缩小了搜索的标签空间的范围,而且最小化学习误差可以随着分类器个数的增加而降低,进而使得标签匹配分类更加快速、准确。 展开更多
关键词 连续ADABOOST 标签学习 多标签集 标签匹配 集成学习
下载PDF
Unseen head pose prediction using dense multivariate label distribution 被引量:1
2
作者 Gao-li SANG Hu CHEN +1 位作者 Ge HUANG Qi-jun ZHAO 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第6期516-526,共11页
Accurate head poses are useful for many face-related tasks such as face recognition, gaze estimation,and emotion analysis. Most existing methods estimate head poses that are included in the training data(i.e.,previous... Accurate head poses are useful for many face-related tasks such as face recognition, gaze estimation,and emotion analysis. Most existing methods estimate head poses that are included in the training data(i.e.,previously seen head poses). To predict head poses that are not seen in the training data, some regression-based methods have been proposed. However, they focus on estimating continuous head pose angles, and thus do not systematically evaluate the performance on predicting unseen head poses. In this paper, we use a dense multivariate label distribution(MLD) to represent the pose angle of a face image. By incorporating both seen and unseen pose angles into MLD, the head pose predictor can estimate unseen head poses with an accuracy comparable to that of estimating seen head poses. On the Pointing'04 database, the mean absolute errors of results for yaw and pitch are 4.01?and 2.13?, respectively. In addition, experiments on the CAS-PEAL and CMU Multi-PIE databases show that the proposed dense MLD-based head pose estimation method can obtain the state-of-the-art performance when compared to some existing methods. 展开更多
关键词 Head pose estimation Dense multivariate label distribution Sampling intervals Inconsistent labels
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部