期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于随机森林和多标记学习算法的慢性胃炎实证特征选择和证候分类识别研究 被引量:21
1
作者 徐玮斐 顾巍杰 +3 位作者 刘国萍 刘晏 颜建军 钟涛 《中国中医药信息杂志》 CAS CSCD 2016年第8期18-23,共6页
目的对慢性胃炎实证证候的特征症状进行选择,并建立证候模型,为慢性胃炎证候量化诊断的建立提供方法学参考。方法运用慢性胃炎中医问诊规范化量表采集临床症状和体征,并运用机器学习领域新提出的随机森林和多标记学习算法对慢性胃炎的... 目的对慢性胃炎实证证候的特征症状进行选择,并建立证候模型,为慢性胃炎证候量化诊断的建立提供方法学参考。方法运用慢性胃炎中医问诊规范化量表采集临床症状和体征,并运用机器学习领域新提出的随机森林和多标记学习算法对慢性胃炎的实证症状进行选择和模型构建。结果运用随机森林和信息增益算法,结合多标记学习算法对证候分别建模,随机森林算法挑选出15个特征症状,信息增益方法挑选出20个特征症状,二者的模型最高准确率分别为83%、82%。通过评价,随机森林算法选出的特征症状更加精简,提高了诊断模型的识别率。结论随机森林结合多标记学习算法可实现慢性胃炎实证证候特征症状的选择,同时还可解决几个证候相兼问题,弥补传统学习算法的不足。 展开更多
关键词 随机森林算法 多标记学习算法 慢性胃炎 特征选择 证候
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部