During the 15th Conference of the Parties (COP 15), Parties agreed that reducing emissions from deforesta- tion and forest degradation and enhancing 'removals of greenhouse gas emission by forests' (REDD+) in d...During the 15th Conference of the Parties (COP 15), Parties agreed that reducing emissions from deforesta- tion and forest degradation and enhancing 'removals of greenhouse gas emission by forests' (REDD+) in developing countries through positive incentives under the United Nations Framework Convention on Climate Change (UNFCCC) was capable of dealing with global emissions. As REDD+ seeks to lower emissions by stopping deforestation and for- est degradation with an international payment tier according to baseline scenarios, opportunities for ecosystem benefits such as slowing habitat fragmentation, conservation of forest biodiversity, soil conservation may be also part of this effort. The primary objective of this study is to evaluate ecosystem-based benefits of REDD+, and to identify the rela- tionships with carbon stock changes. To achieve this goal, high resolution satellite images are combined with Normal- ized Difference Vegetation Index (NDVI) to identify historical deforestation in study area of Central Kalimantan, In- donesia. The carbon emissions for the period of 2000-2005 and 2005-2009 are 2.73 ×10^5 t CO2 and 1.47× 10^6 t CO2 respectively, showing an increasing trend in recent years. Dring 2005-2009, number of patches (NP), patch density (PD), mean shape index distribution (SHAPE_MN) increased 30.8%, 30.7% and 7.6%. Meanwhile, largest patch index (LPI), mean area (AREA MN), area-weighted mean of shape index distribution (SHAPE_AM), neighbor distance (ENN_MN) and interspersion and juxtaposition index (IJI) decreased by 55.3%, 29.7%, 15.8%, 53.4% and 21.5% re- spectively. The area regarding as positive correlation between carbon emissions and soil erosion was approximately 8.9 x l03 ha corresponding to 96.0% of the changing forest. These results support the view that there are strong syner- gies among carbon loss, forest fragmentation and soil erosion in tropical forests. Such mechanism of REDD+ is likely to present opportunities for multiple benefits that fall outside the scope of carbon stocks.展开更多
Many countries are developing national strategies and action plans aimed at minimising the negative impacts of climate change on biodiversity.The purpose of this paper is to provide a brief overview not only of strate...Many countries are developing national strategies and action plans aimed at minimising the negative impacts of climate change on biodiversity.The purpose of this paper is to provide a brief overview not only of strategies and plans that have been developed in Australia,but also of research that has been carried out in Australia by the Commonwealth Scientific and Industrial Research Organisation(CSIRO) Climate Adaptation Flagship to assist the development of future strategies and plans.Major points are summarised from key policy documents such as the National Biodiversity and Climate Change Action Plan 2004-2007,and Australia's Biodiversity Conservation Strategy 2010-2030,as well as the 2009 report on "Australia's Biodiversity and Climate Change".Within the first three years of its existence,the Natural Ecosystems theme in CSIRO Climate Adaptation Flagship has carried out studies analysing impacts and identifying potential adaptations across the whole of Australia's vast terrestrial and marine environments.Techniques used in these studies could be applied easily in other countries and could assist the development of more effective national strategies and adaptation action plans for the conservation of biodiversity under climate change.展开更多
Many biodiversity indices were used to indicate the biological contamination degree in studies of lake water or seawater. Some were studied on biodiversity comparison for different areas at the same time, or initial s...Many biodiversity indices were used to indicate the biological contamination degree in studies of lake water or seawater. Some were studied on biodiversity comparison for different areas at the same time, or initial structure succession of some aerial lake water systems. The phytoplankton changed with the development of various dominant species. In this study, the dominant species at these stages were Chlorophyta in the beginning stage, Cyanophyta in the second stage, and Xanthophyta in the last stage. Seven of nine biodiversity indices (Margalef's, IE, Shannon-Wiener, Simpson's, McNaughton's, Species and Odds Measure of Diversity) showed their failure to represent the eutrophication trend, and the other two indices (Menhinick's and Monk) exhibited good efficiency to indicate the eutrophication trend for the static landscaping water body.展开更多
Deforestation is one of the most crucial problems in Indonesia. It creates a number of environmental problems, e.g., landslides, loss of biological diversity, and decrease of carbon sequestration which are impacting h...Deforestation is one of the most crucial problems in Indonesia. It creates a number of environmental problems, e.g., landslides, loss of biological diversity, and decrease of carbon sequestration which are impacting human lives, There are a number of underlying causes, often stemmed from the emphasis on a particular forest management objective. Despite numerous forest policies and regulations established by the government, deforestation continues to happen. Quite often, the policies and regulations remain "paper tiger", which means ineffectual on the ground. One of the contributing factors to deforestation is the lack of custodian for the management of the forests. The regulation, such as law No. 41/1999, stipulates that all state forests must be managed under a FMI3 (forest management unit) as the custodians. The objective of this research is to develop an optimal model for FMU. Using the LGP (linear goal programming), this research attempts to develop an optimum model for conservation areas. It assumes that the existing zoning approach implemented by the government in conservation areas is inappropriate. The optimum zoning model is expected to improve forest management and restore the forest function as a life supporting system and biological diversity conservation.展开更多
Climate change has been linked to well-documented changes in physiology, phenology, species distributions, and in some cases, extinction. Projections of future change point to dramatic shifts in the states of many eco...Climate change has been linked to well-documented changes in physiology, phenology, species distributions, and in some cases, extinction. Projections of future change point to dramatic shifts in the states of many ecosystems. Aceommodating these shifts to effectively conserve biodiversity in the context of uncertain climate regimes represents one of the most difficult challenges faced by conservation planners. A number of adaptation strategies have been proposed for managing species and ecosystems in a changing climate. However, there has been little guidance available on integrating climate change adaptation strategies into contemporary conservation planning frameworks. The paper reviews the different approaches being used to integrate climate change adaptation into conservation planning, broadly categorizing strategies as continuing and extending on "best practice" principles and those that integrate species vulnerability assessments into conservation planning. We describe the characteristics of a good adaptation strategy emphasizing the importance of incorporating clear principles of flexibility and efficiency, accounting for uncertainty, integrating human response to climate change and understanding trade-offs.展开更多
Human disturbance and climate change have increased the risk of extinction for rare and endangered wild plant species.One effective way to conserve these rare and endangered species is through reintroduction.In this r...Human disturbance and climate change have increased the risk of extinction for rare and endangered wild plant species.One effective way to conserve these rare and endangered species is through reintroduction.In this review,we summarize the advances in wild plant reintroduction from five perspectives:the establishment of reintroduction biology as an important tool for biodiversity conservation;the importance of genetic diversity in reintroduction;reintroduction under global climate change;recruitment limitation in reintroduction;and reintroduction and ecological restoration.In addition,we consider the future of plant reintroduction strategies.展开更多
Understanding present patterns of genetic diversity is critical in order to design effective conservation and manage- ment strategies for endangered species. Tangjiahe Nature Reserve (NR) is one of the most importan...Understanding present patterns of genetic diversity is critical in order to design effective conservation and manage- ment strategies for endangered species. Tangjiahe Nature Reserve (NR) is one of the most important national reserves for giant pandas Ailuropoda melanoleuca in China. Previous studies have shown that giant pandas in Tangjiahe NR may be threatened by population decline and fragmentation. Here we used 10 microsatellite DNA markers to assess the genetic variability in the Tang- jiahe population. The results indicate a low level of genetic differentiation between the Hongshihe and Motianling subpopulations in the reserve. Assignment tests using the Bayesian clustering method in STRUCTURE identified one genetic cluster from 42 in- dividuals of the two subpopulations. All individuals from the same subpopulation were assigned to one cluster. This indicates high gene flow between subpopulations. F statistic analyses revealed a low Fzs-value of 0.024 in the total population and implies a randomly mating population in Tangjiahe NR. Additionally, our data show a high level of genetic diversity for the Tangjiahe population. Mean allele number (A), Allelic richness (AR) and mean expected heterozygosity (HE) for the Tangjiahe population was 5.9, 5.173 and 0.703, respectively. This wild giant panda population can be restored through concerted effort展开更多
基金Under the auspices of National Basic Research Program of China (No. 2012CB955800,2012CB955804)National Natural Science Foundation of China (No. 41171438)+2 种基金Foundation of Asia-Pacific Network for Global Change Research (No.EBLU2010-01NSY-Suneetha)Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05050000)Science Foundation of Government of Henan Province & Ministry of Education (No. SBGJ090110,2010YBZR043)
文摘During the 15th Conference of the Parties (COP 15), Parties agreed that reducing emissions from deforesta- tion and forest degradation and enhancing 'removals of greenhouse gas emission by forests' (REDD+) in developing countries through positive incentives under the United Nations Framework Convention on Climate Change (UNFCCC) was capable of dealing with global emissions. As REDD+ seeks to lower emissions by stopping deforestation and for- est degradation with an international payment tier according to baseline scenarios, opportunities for ecosystem benefits such as slowing habitat fragmentation, conservation of forest biodiversity, soil conservation may be also part of this effort. The primary objective of this study is to evaluate ecosystem-based benefits of REDD+, and to identify the rela- tionships with carbon stock changes. To achieve this goal, high resolution satellite images are combined with Normal- ized Difference Vegetation Index (NDVI) to identify historical deforestation in study area of Central Kalimantan, In- donesia. The carbon emissions for the period of 2000-2005 and 2005-2009 are 2.73 ×10^5 t CO2 and 1.47× 10^6 t CO2 respectively, showing an increasing trend in recent years. Dring 2005-2009, number of patches (NP), patch density (PD), mean shape index distribution (SHAPE_MN) increased 30.8%, 30.7% and 7.6%. Meanwhile, largest patch index (LPI), mean area (AREA MN), area-weighted mean of shape index distribution (SHAPE_AM), neighbor distance (ENN_MN) and interspersion and juxtaposition index (IJI) decreased by 55.3%, 29.7%, 15.8%, 53.4% and 21.5% re- spectively. The area regarding as positive correlation between carbon emissions and soil erosion was approximately 8.9 x l03 ha corresponding to 96.0% of the changing forest. These results support the view that there are strong syner- gies among carbon loss, forest fragmentation and soil erosion in tropical forests. Such mechanism of REDD+ is likely to present opportunities for multiple benefits that fall outside the scope of carbon stocks.
文摘Many countries are developing national strategies and action plans aimed at minimising the negative impacts of climate change on biodiversity.The purpose of this paper is to provide a brief overview not only of strategies and plans that have been developed in Australia,but also of research that has been carried out in Australia by the Commonwealth Scientific and Industrial Research Organisation(CSIRO) Climate Adaptation Flagship to assist the development of future strategies and plans.Major points are summarised from key policy documents such as the National Biodiversity and Climate Change Action Plan 2004-2007,and Australia's Biodiversity Conservation Strategy 2010-2030,as well as the 2009 report on "Australia's Biodiversity and Climate Change".Within the first three years of its existence,the Natural Ecosystems theme in CSIRO Climate Adaptation Flagship has carried out studies analysing impacts and identifying potential adaptations across the whole of Australia's vast terrestrial and marine environments.Techniques used in these studies could be applied easily in other countries and could assist the development of more effective national strategies and adaptation action plans for the conservation of biodiversity under climate change.
基金Sponsored by the National Basic Research Program of China (Grant No.2004CB418505)
文摘Many biodiversity indices were used to indicate the biological contamination degree in studies of lake water or seawater. Some were studied on biodiversity comparison for different areas at the same time, or initial structure succession of some aerial lake water systems. The phytoplankton changed with the development of various dominant species. In this study, the dominant species at these stages were Chlorophyta in the beginning stage, Cyanophyta in the second stage, and Xanthophyta in the last stage. Seven of nine biodiversity indices (Margalef's, IE, Shannon-Wiener, Simpson's, McNaughton's, Species and Odds Measure of Diversity) showed their failure to represent the eutrophication trend, and the other two indices (Menhinick's and Monk) exhibited good efficiency to indicate the eutrophication trend for the static landscaping water body.
文摘Deforestation is one of the most crucial problems in Indonesia. It creates a number of environmental problems, e.g., landslides, loss of biological diversity, and decrease of carbon sequestration which are impacting human lives, There are a number of underlying causes, often stemmed from the emphasis on a particular forest management objective. Despite numerous forest policies and regulations established by the government, deforestation continues to happen. Quite often, the policies and regulations remain "paper tiger", which means ineffectual on the ground. One of the contributing factors to deforestation is the lack of custodian for the management of the forests. The regulation, such as law No. 41/1999, stipulates that all state forests must be managed under a FMI3 (forest management unit) as the custodians. The objective of this research is to develop an optimal model for FMU. Using the LGP (linear goal programming), this research attempts to develop an optimum model for conservation areas. It assumes that the existing zoning approach implemented by the government in conservation areas is inappropriate. The optimum zoning model is expected to improve forest management and restore the forest function as a life supporting system and biological diversity conservation.
文摘Climate change has been linked to well-documented changes in physiology, phenology, species distributions, and in some cases, extinction. Projections of future change point to dramatic shifts in the states of many ecosystems. Aceommodating these shifts to effectively conserve biodiversity in the context of uncertain climate regimes represents one of the most difficult challenges faced by conservation planners. A number of adaptation strategies have been proposed for managing species and ecosystems in a changing climate. However, there has been little guidance available on integrating climate change adaptation strategies into contemporary conservation planning frameworks. The paper reviews the different approaches being used to integrate climate change adaptation into conservation planning, broadly categorizing strategies as continuing and extending on "best practice" principles and those that integrate species vulnerability assessments into conservation planning. We describe the characteristics of a good adaptation strategy emphasizing the importance of incorporating clear principles of flexibility and efficiency, accounting for uncertainty, integrating human response to climate change and understanding trade-offs.
基金supported by the National Key Fundamental Research Development Plan (2009CB421101)the National Natural Science Foundation of China (40871249,30670370)
文摘Human disturbance and climate change have increased the risk of extinction for rare and endangered wild plant species.One effective way to conserve these rare and endangered species is through reintroduction.In this review,we summarize the advances in wild plant reintroduction from five perspectives:the establishment of reintroduction biology as an important tool for biodiversity conservation;the importance of genetic diversity in reintroduction;reintroduction under global climate change;recruitment limitation in reintroduction;and reintroduction and ecological restoration.In addition,we consider the future of plant reintroduction strategies.
文摘Understanding present patterns of genetic diversity is critical in order to design effective conservation and manage- ment strategies for endangered species. Tangjiahe Nature Reserve (NR) is one of the most important national reserves for giant pandas Ailuropoda melanoleuca in China. Previous studies have shown that giant pandas in Tangjiahe NR may be threatened by population decline and fragmentation. Here we used 10 microsatellite DNA markers to assess the genetic variability in the Tang- jiahe population. The results indicate a low level of genetic differentiation between the Hongshihe and Motianling subpopulations in the reserve. Assignment tests using the Bayesian clustering method in STRUCTURE identified one genetic cluster from 42 in- dividuals of the two subpopulations. All individuals from the same subpopulation were assigned to one cluster. This indicates high gene flow between subpopulations. F statistic analyses revealed a low Fzs-value of 0.024 in the total population and implies a randomly mating population in Tangjiahe NR. Additionally, our data show a high level of genetic diversity for the Tangjiahe population. Mean allele number (A), Allelic richness (AR) and mean expected heterozygosity (HE) for the Tangjiahe population was 5.9, 5.173 and 0.703, respectively. This wild giant panda population can be restored through concerted effort