期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于多样化top-k shapelets转换的时间序列分类方法 被引量:13
1
作者 孙其法 闫秋艳 闫欣鸣 《计算机应用》 CSCD 北大核心 2017年第2期335-340,共6页
针对基于shapelets转换的时间序列分类方法中候选shapelets存在较大相似性的问题,提出一种基于多样化top-k shapelets转换的分类方法 Div Top KShapelet。该方法采用多样化top-k查询技术,去除相似shapelets,并筛选出最具代表性的k个shap... 针对基于shapelets转换的时间序列分类方法中候选shapelets存在较大相似性的问题,提出一种基于多样化top-k shapelets转换的分类方法 Div Top KShapelet。该方法采用多样化top-k查询技术,去除相似shapelets,并筛选出最具代表性的k个shapelets集合,最后以最优shapelets集合为特征对数据集进行转换,达到提高分类准确率及时间效率的目的。实验结果表明,Div Top KShapelet分类方法不仅比传统分类方法具有更高的准确率,而且与使用聚类筛选的方法(Cluster Shapelet)和shapelets覆盖的方法(Shapelet Selection)相比,分类准确率最多提高了48.43%和32.61%;同时在所有15个数据集上均有计算效率的提升,最少加速了1.09倍,最高可达到287.8倍。 展开更多
关键词 时间序列分类 shapelets 多样化top-k
下载PDF
基于多样化Shapelets的不平衡时间序列分类方法
2
作者 孙其法 《信息与电脑》 2021年第18期45-47,共3页
针对现有shapelets分类方法不能解决不平衡时间序列分类的问题,提出了基于多样化top-k shapelets转换的时间序列分类方法,用不平衡数据分类评价指标曲线下面积(Area Under Curve,AUC)代替传统的信息熵,作为衡量shapelets的标准,并利用... 针对现有shapelets分类方法不能解决不平衡时间序列分类的问题,提出了基于多样化top-k shapelets转换的时间序列分类方法,用不平衡数据分类评价指标曲线下面积(Area Under Curve,AUC)代替传统的信息熵,作为衡量shapelets的标准,并利用多样化top-k shapelets对训练集进行转换,最后使用SMOTE方法对转换后的训练集进行过采样。该方法利用AUC值对不平衡数据不敏感的特性,提高shapelets特征评估分类的准确性,不仅可以有效提取时间序列特征,还能在特征的基础上进行数据集的平衡处理。 展开更多
关键词 时间序列分类 shapelets 多样化top-k 不平衡数据分类
下载PDF
基于趋势特征表示的shapelet分类方法 被引量:5
3
作者 闫欣鸣 孟凡荣 闫秋艳 《计算机应用》 CSCD 北大核心 2017年第8期2343-2348,2356,共7页
Shapelet是一种具有辨识性的时间序列子序列,通过识别局部特征达到对时间序列准确分类的目的。原始shapelet发现算法效率较低,大量工作关注于提高shapelet发现的效率。然而,对于带有趋势变化的时间序列,采用典型的时间序列表示方法进行s... Shapelet是一种具有辨识性的时间序列子序列,通过识别局部特征达到对时间序列准确分类的目的。原始shapelet发现算法效率较低,大量工作关注于提高shapelet发现的效率。然而,对于带有趋势变化的时间序列,采用典型的时间序列表示方法进行shapelet发现,容易造成序列中趋势信息的丢失。为了解决时间序列趋势信息丢失的问题,提出一种基于趋势特征的多样化top-k shapelet分类方法:首先采用趋势特征符号化方法对时间序列的趋势信息进行表示;然后针对序列的趋势特征符号获取shapelet候选集合;最后通过引入多样化top-k查询算法从候选集中选取k个最具代表性的shapelets。在时间序列的分类实验中,与传统分类算法相比,所提方法在11个数据集上的分类准确率均有提升;与Fast Shapelet算法相比,提升了运行效率,缩短了算法的运行时间,并在趋势信息明显的数据上效果显著。结果表明,所提方法能有效提高时间序列的分类准确率,提升算法运行效率。 展开更多
关键词 shapelet 趋势特征 符号化 多样化top-k查询 时间序列分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部