Problems, which are studied in the paper, concern to theoretical aspects of interpolation theory. As is known, interpolation is one of the methods for approximate representation or recovery of functions on the basis o...Problems, which are studied in the paper, concern to theoretical aspects of interpolation theory. As is known, interpolation is one of the methods for approximate representation or recovery of functions on the basis of their given values at points of a grid. Interpolating functions can be chosen by many various ways. In the paper the authors are interested in interpolating functions, for which the Laplace operator, applied to them, has a minimal norm. The authors interpolate infinite bounded sequences at the knots of the square grid in Euclidian space. The considered problem is formulated as an extremal one. The main result of the paper is the theorem, in which certain estimates for the uniform norm of the Laplace operator applied to smooth interpolating functions of two real variables are established for the class of all bounded (in the corresponding discrete norm) interpolated sequences. Also connections of the considered interpolation problem with other problems and with embeddings of the Sobolev classes into the space of continuous functions are discussed. In the final part of the main section of the paper, the authors formulate some open problems in this area and sketch possible approaches to the search of solutions. In order to prove the main results, the authors use methods of classical mathematical analysis and the theory of polynomial splines of one variable with equidistant knots.展开更多
文摘Problems, which are studied in the paper, concern to theoretical aspects of interpolation theory. As is known, interpolation is one of the methods for approximate representation or recovery of functions on the basis of their given values at points of a grid. Interpolating functions can be chosen by many various ways. In the paper the authors are interested in interpolating functions, for which the Laplace operator, applied to them, has a minimal norm. The authors interpolate infinite bounded sequences at the knots of the square grid in Euclidian space. The considered problem is formulated as an extremal one. The main result of the paper is the theorem, in which certain estimates for the uniform norm of the Laplace operator applied to smooth interpolating functions of two real variables are established for the class of all bounded (in the corresponding discrete norm) interpolated sequences. Also connections of the considered interpolation problem with other problems and with embeddings of the Sobolev classes into the space of continuous functions are discussed. In the final part of the main section of the paper, the authors formulate some open problems in this area and sketch possible approaches to the search of solutions. In order to prove the main results, the authors use methods of classical mathematical analysis and the theory of polynomial splines of one variable with equidistant knots.