Y and inverted Y-type four-level schemes for optical quantum coherence systems,which may be intuitivelyconsidered to be very simple,have not been studied intensively till now.In this paper,we present the multiformity ...Y and inverted Y-type four-level schemes for optical quantum coherence systems,which may be intuitivelyconsidered to be very simple,have not been studied intensively till now.In this paper,we present the multiformity ofthese two types of schemes by considering that they can be classified into nine possible level styles as the second-ordersub-schemes using laser fields.Further we point out the complexity of their more than one hundred realistic configurationsas the third-order four-level sub-schemes that may appear in the optical quantum coherence experiments.Throughoutthis paper we review which configurations have been studied in some research aspects and which ones not,accordingto our knowledge,in order to be propitious to next steps of theoretical and experimental investigations,especially forapplications in the fields of quantum optics,quantum information science,laser spectroscopy,and so on.展开更多
基金中国科学院知识创新工程重要方向项目(KZCX2-EW-111)国家自然科学基金(40839910)+3 种基金美国自然科学基金(EAR0418790)资助地质生物多样性数据库项目(Geobiodiversity Databasewww.geobio-diversity.com)IGCP591项目"The Early to Middle Paleozoic Revolution"系列成果之一
基金Supported by the Research Starting Funds of Tianjin Polytechnic University under Grant Nos.20080033 and 20070010
文摘Y and inverted Y-type four-level schemes for optical quantum coherence systems,which may be intuitivelyconsidered to be very simple,have not been studied intensively till now.In this paper,we present the multiformity ofthese two types of schemes by considering that they can be classified into nine possible level styles as the second-ordersub-schemes using laser fields.Further we point out the complexity of their more than one hundred realistic configurationsas the third-order four-level sub-schemes that may appear in the optical quantum coherence experiments.Throughoutthis paper we review which configurations have been studied in some research aspects and which ones not,accordingto our knowledge,in order to be propitious to next steps of theoretical and experimental investigations,especially forapplications in the fields of quantum optics,quantum information science,laser spectroscopy,and so on.