106 aeeessions of Tibetan wild barley, including 50 accessions of the two-rowed wiht barley Hordeum vulgare ssp. sopntaneum (HS), 27 accessions of the six-rowed bottle-shaped wild barley H. lagunculiforme (HL) and...106 aeeessions of Tibetan wild barley, including 50 accessions of the two-rowed wiht barley Hordeum vulgare ssp. sopntaneum (HS), 27 accessions of the six-rowed bottle-shaped wild barley H. lagunculiforme (HL) and 29 accessions of the six-rowed wiht barley H. agriocrithon (HA) that separately represent different agrigeographical regions of Tibet, were used to study the genetic diversity and genetie differentiation using SSR markers selected from seven barley linkage groups. 229 allelic variants were identified with an average of 7.6 alleles/locus. The average of total number of alleles per locus in HA (6.4) is much higher than that in HS (3.9) and HL (3.4). The genetie diversity and its standard deviation among the three subspecies were in the order of HS〉HL〉HA. Very significant genetic differentiation was observed among the three subspecies of wild barley. Comparisons of the results fiom this and previous studies showed a strong Oriental-Occidental differentiation of barley, and that Shannan region of Tibet might be the center of origin of the Tibetan two-rowed wild barley, thus supporting not only the hypothesis of a mono-phyletie origin of cultivated barley but also the proposition that the Tibetan two-rowed wild barley as ultimate progenitor of Chinese cultivated barley.展开更多
The sex-related molecular marker of the Yangtze finless porpoise was screened using Amplified Fragment Length Polymorphism (AFLP) technique combined with the bulked segregant analysis. Totally 36 AFLP primer combinati...The sex-related molecular marker of the Yangtze finless porpoise was screened using Amplified Fragment Length Polymorphism (AFLP) technique combined with the bulked segregant analysis. Totally 36 AFLP primer combinations were used to detect the genome DNA bulks of the female and male porpoises, and one sex-related AFLP marker was finally obtained. The marker can be applied to sex identification, and provides a base for further cloning of sex-related genes and analyzing of Y chromosome haplotypes of the Yangtze finless porpoise.展开更多
In the present study, genetic polymorphism and diversity in unicellular clones of Chlorella vulgaris Beijerinck and Chlorella pyrenoidosa Chick were studied with Inter Simple Sequence Repeats PCR (ISSR PCR). Samples...In the present study, genetic polymorphism and diversity in unicellular clones of Chlorella vulgaris Beijerinck and Chlorella pyrenoidosa Chick were studied with Inter Simple Sequence Repeats PCR (ISSR PCR). Samples including four clones of C. vulgaris and three clones of C. pyrenoidosa were purified by single-clone-choice method. For four C. vulgaris unicellular clones, the total number of the bands scored for 18 primers was 298; and the number of the polymorphic bands was 118, of which 39.6% were polymorphic. The size of PCR products ranged from 200 to 2 500 bp. The total number of bands scored for 18 primers, the number of polymorphic bands and the percentage of three C. pyrenoidosa unicellular clones was 194.83 and 30.8%, respectively. POPGENE analysis show that the average Nei genetic diversity (h^*) and Shannon index of diversity (I^*) in the four C. vulgaris unicellular clones was 0.2181 and 0.3208, respectively, which is slightly higher than those of the three C. pyrenoidosa unicellular clones (0.190 3 and 0.274 8), which agreed with the percentage of polymorphic bands in the mixed samples of the two species. The results suggest that ISSR is a useful method to Chlorella for intra-species genetic analysis.展开更多
Genotoxic chemicals, through damage and alteration of the genetic material of wild organisms, pose significant threats to the persistence of wild animal populations. Their damaging effects can ultimately impair the he...Genotoxic chemicals, through damage and alteration of the genetic material of wild organisms, pose significant threats to the persistence of wild animal populations. Their damaging effects can ultimately impair the health of the ecosystem and its provision of services to human society. Bird species are good candidates for the role of sentinels of the effects of genotoxins, thanks to (i) the diversity of their ecological niches, (ii) their ubiquity across environments, (iii) their conspicuousness, abundance and approachability, together with (iv) their well-known life histories and the availability of historical data series. Avian diversity increases the likelihood that adequate model species be available for monitoring genotoxicants and assessing their impact. This paper reviews the methods utilized by genetic ecotoxicological studies of wild birds, highlighting their benefits and shortcomings. It also summarizes the genetic ecotoxicological studies so far conducted. In spite of a paucity of studies, several classes of genotoxicants have already been investigated across a variety of species and environments, thus supporting the versatility of birds as monitors of genotoxic contamination. Future technical advancements and applications are suggested, with par- ticular reference to the analysis of mutational events, gene expression and methylation patterns. Finally, I argue that the development of avian genetic ecotoxicology will contribute to the understanding of natural variation in the underlying machinery for coping with DNA damage and oxidative stress, both of which are increasingly recognized as proximate factors in the evolution of life history adaptations [Current Zoology 60 (2): 285-298, 2014].展开更多
文摘106 aeeessions of Tibetan wild barley, including 50 accessions of the two-rowed wiht barley Hordeum vulgare ssp. sopntaneum (HS), 27 accessions of the six-rowed bottle-shaped wild barley H. lagunculiforme (HL) and 29 accessions of the six-rowed wiht barley H. agriocrithon (HA) that separately represent different agrigeographical regions of Tibet, were used to study the genetic diversity and genetie differentiation using SSR markers selected from seven barley linkage groups. 229 allelic variants were identified with an average of 7.6 alleles/locus. The average of total number of alleles per locus in HA (6.4) is much higher than that in HS (3.9) and HL (3.4). The genetie diversity and its standard deviation among the three subspecies were in the order of HS〉HL〉HA. Very significant genetic differentiation was observed among the three subspecies of wild barley. Comparisons of the results fiom this and previous studies showed a strong Oriental-Occidental differentiation of barley, and that Shannan region of Tibet might be the center of origin of the Tibetan two-rowed wild barley, thus supporting not only the hypothesis of a mono-phyletie origin of cultivated barley but also the proposition that the Tibetan two-rowed wild barley as ultimate progenitor of Chinese cultivated barley.
文摘The sex-related molecular marker of the Yangtze finless porpoise was screened using Amplified Fragment Length Polymorphism (AFLP) technique combined with the bulked segregant analysis. Totally 36 AFLP primer combinations were used to detect the genome DNA bulks of the female and male porpoises, and one sex-related AFLP marker was finally obtained. The marker can be applied to sex identification, and provides a base for further cloning of sex-related genes and analyzing of Y chromosome haplotypes of the Yangtze finless porpoise.
基金Supported by National Natural Science Foundation of China (No:40206019)
文摘In the present study, genetic polymorphism and diversity in unicellular clones of Chlorella vulgaris Beijerinck and Chlorella pyrenoidosa Chick were studied with Inter Simple Sequence Repeats PCR (ISSR PCR). Samples including four clones of C. vulgaris and three clones of C. pyrenoidosa were purified by single-clone-choice method. For four C. vulgaris unicellular clones, the total number of the bands scored for 18 primers was 298; and the number of the polymorphic bands was 118, of which 39.6% were polymorphic. The size of PCR products ranged from 200 to 2 500 bp. The total number of bands scored for 18 primers, the number of polymorphic bands and the percentage of three C. pyrenoidosa unicellular clones was 194.83 and 30.8%, respectively. POPGENE analysis show that the average Nei genetic diversity (h^*) and Shannon index of diversity (I^*) in the four C. vulgaris unicellular clones was 0.2181 and 0.3208, respectively, which is slightly higher than those of the three C. pyrenoidosa unicellular clones (0.190 3 and 0.274 8), which agreed with the percentage of polymorphic bands in the mixed samples of the two species. The results suggest that ISSR is a useful method to Chlorella for intra-species genetic analysis.
文摘Genotoxic chemicals, through damage and alteration of the genetic material of wild organisms, pose significant threats to the persistence of wild animal populations. Their damaging effects can ultimately impair the health of the ecosystem and its provision of services to human society. Bird species are good candidates for the role of sentinels of the effects of genotoxins, thanks to (i) the diversity of their ecological niches, (ii) their ubiquity across environments, (iii) their conspicuousness, abundance and approachability, together with (iv) their well-known life histories and the availability of historical data series. Avian diversity increases the likelihood that adequate model species be available for monitoring genotoxicants and assessing their impact. This paper reviews the methods utilized by genetic ecotoxicological studies of wild birds, highlighting their benefits and shortcomings. It also summarizes the genetic ecotoxicological studies so far conducted. In spite of a paucity of studies, several classes of genotoxicants have already been investigated across a variety of species and environments, thus supporting the versatility of birds as monitors of genotoxic contamination. Future technical advancements and applications are suggested, with par- ticular reference to the analysis of mutational events, gene expression and methylation patterns. Finally, I argue that the development of avian genetic ecotoxicology will contribute to the understanding of natural variation in the underlying machinery for coping with DNA damage and oxidative stress, both of which are increasingly recognized as proximate factors in the evolution of life history adaptations [Current Zoology 60 (2): 285-298, 2014].