A general transition‐metal‐free photoinduced acetalation‐pyridylation of alkenes using diethoxyacetic acid and cyanopyridine was developed under mild conditions.By employing 4CzIPN as the photocatalyst and Cs_(2)CO...A general transition‐metal‐free photoinduced acetalation‐pyridylation of alkenes using diethoxyacetic acid and cyanopyridine was developed under mild conditions.By employing 4CzIPN as the photocatalyst and Cs_(2)CO_(3) as the base,a diverse range of styrene derivatives and cyanopyridines worked well to give the desired products.The versatility of this method is highlighted by its application in the construction of various functional groups and the late‐stage modification of drugs.Importantly,some of the synthesized compounds showed good in vitro antitumor activity,indicating that this protocol is of significance and potential for antitumor drug development.展开更多
A joint cooperation diversity and symbol mapping diversity (SMD) strategy is proposed for cooperative packet retransmission system with high-order modulation such as 16QAM. Substantial SER/BER (symbol error rate/bit e...A joint cooperation diversity and symbol mapping diversity (SMD) strategy is proposed for cooperative packet retransmission system with high-order modulation such as 16QAM. Substantial SER/BER (symbol error rate/bit error rate) gains result from multiple packet transmissions over independent paths and distinct bit-to-symbol mappings for each packet transmis-sion. The SER/BER performance of relay assisted retransmission system is analyzed. Simulation results show that the joint-diversity strategy can provide more BER gains than other relaying strategies (i.e., decode-and-forward and constellation rearrangement relaying strategies) when no relay makes a decision error; but if some relays make decision errors, the joint-di-versity strategy outperforms other relaying strategies only when the relays are closer to the source than to the destination.展开更多
The steady increase of lgE-dependent allergic diseases after the Second World War is a unique phenomenon in the history of humankind. Numerous cross-sectional studies, comprehensive longitudinal cohort studies of chil...The steady increase of lgE-dependent allergic diseases after the Second World War is a unique phenomenon in the history of humankind. Numerous cross-sectional studies, comprehensive longitudinal cohort studies of children living in various types of environment, and mechanistic experimental studies have pointed to the disappearance of "protective factors" related to major changes in lifestyle and environment. A common unifying concept is that of the immunoregulatory role of the gut microbiota. This review focuses on the protection against allergic disorders that is provided by the farming environment and by exposure to microbial diversity. It also questions whether and how microbial bioengineering will be able in the future to restore an interplay that was beneficial to the proper immunological development of children in the past and that was irreversibly disrupted by changes in lifestyle. The protective "farming environment" includes independent and additional influences: contact with animals, stay in barns/stables, and consumption of unprocessed milk and milk products, by mothers during pregnancy and by children in early life. More than the overall quanti- ty of microbes, the biodiversity of the farm microbial environment appears to be crucial for this protection, as does the biodiversity of the gut microbiota that it may provide. Use of conventional probiotics, especially various species or strains of Lactobacillus and Bifidobacterium, has not fulfilled the expectations of allergists and pediatricians to prevent allergy. Among the specific organisms present in cowsheds that could be used for prevention, Acinetobacter (A.) lwoffii F78, Lactococcus ( L.) lactis G121, and Staphylococcus (S.) sciuri W620 seem to be the most promising, based on experimental studies in mouse models of allergic respiratory diseases. However, the development of a new generation of probiotics based on very productive research on the farming environment faces several obstacles that cannot be overcome without a close collaboration between microbiologists, immunologists, and bioengineers, as well as pediatricians, allergists, specialists of clinical trials, and ethical committees.展开更多
文摘A general transition‐metal‐free photoinduced acetalation‐pyridylation of alkenes using diethoxyacetic acid and cyanopyridine was developed under mild conditions.By employing 4CzIPN as the photocatalyst and Cs_(2)CO_(3) as the base,a diverse range of styrene derivatives and cyanopyridines worked well to give the desired products.The versatility of this method is highlighted by its application in the construction of various functional groups and the late‐stage modification of drugs.Importantly,some of the synthesized compounds showed good in vitro antitumor activity,indicating that this protocol is of significance and potential for antitumor drug development.
基金the National Natural Science Foundation of China (No. 60372107)the Natural Science Fund for Higher Educa-tion of Jiangsu Province, China (No. 06KJA51001)the Natural Science Fund of the Science and Technology Department of Jiangsu Province, China (No. BK2007729)
文摘A joint cooperation diversity and symbol mapping diversity (SMD) strategy is proposed for cooperative packet retransmission system with high-order modulation such as 16QAM. Substantial SER/BER (symbol error rate/bit error rate) gains result from multiple packet transmissions over independent paths and distinct bit-to-symbol mappings for each packet transmis-sion. The SER/BER performance of relay assisted retransmission system is analyzed. Simulation results show that the joint-diversity strategy can provide more BER gains than other relaying strategies (i.e., decode-and-forward and constellation rearrangement relaying strategies) when no relay makes a decision error; but if some relays make decision errors, the joint-di-versity strategy outperforms other relaying strategies only when the relays are closer to the source than to the destination.
文摘The steady increase of lgE-dependent allergic diseases after the Second World War is a unique phenomenon in the history of humankind. Numerous cross-sectional studies, comprehensive longitudinal cohort studies of children living in various types of environment, and mechanistic experimental studies have pointed to the disappearance of "protective factors" related to major changes in lifestyle and environment. A common unifying concept is that of the immunoregulatory role of the gut microbiota. This review focuses on the protection against allergic disorders that is provided by the farming environment and by exposure to microbial diversity. It also questions whether and how microbial bioengineering will be able in the future to restore an interplay that was beneficial to the proper immunological development of children in the past and that was irreversibly disrupted by changes in lifestyle. The protective "farming environment" includes independent and additional influences: contact with animals, stay in barns/stables, and consumption of unprocessed milk and milk products, by mothers during pregnancy and by children in early life. More than the overall quanti- ty of microbes, the biodiversity of the farm microbial environment appears to be crucial for this protection, as does the biodiversity of the gut microbiota that it may provide. Use of conventional probiotics, especially various species or strains of Lactobacillus and Bifidobacterium, has not fulfilled the expectations of allergists and pediatricians to prevent allergy. Among the specific organisms present in cowsheds that could be used for prevention, Acinetobacter (A.) lwoffii F78, Lactococcus ( L.) lactis G121, and Staphylococcus (S.) sciuri W620 seem to be the most promising, based on experimental studies in mouse models of allergic respiratory diseases. However, the development of a new generation of probiotics based on very productive research on the farming environment faces several obstacles that cannot be overcome without a close collaboration between microbiologists, immunologists, and bioengineers, as well as pediatricians, allergists, specialists of clinical trials, and ethical committees.