期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Improving performance portability for GPU-specific Open CL kernels on multi-core/many-core CPUs by analysis-based transformations
1
作者 Mei WEN Da-fei HUANG +1 位作者 Chang-qing XUN Dong CHEN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第11期899-916,共18页
OpenCL is an open heterogeneous programming framework. Although OpenCL programs are func- tionally portable, they do not provide performance portability, so code transformation often plays an irreplaceable role. When ... OpenCL is an open heterogeneous programming framework. Although OpenCL programs are func- tionally portable, they do not provide performance portability, so code transformation often plays an irreplaceable role. When adapting GPU-specific OpenCL kernels to run on multi-core/many-core CPUs, coarsening the thread granularity is necessary and thus has been extensively used. However, locality concerns exposed in GPU-specific OpenCL code are usually inherited without analysis, which may give side-effects on the CPU performance. Typi- cally, the use of OpenCL's local memory on multi-core/many-core CPUs may lead to an opposite performance effect, because local-memory arrays no longer match well with the hardware and the associated synchronizations are costly. To solve this dilemma, we actively analyze the memory access patterns using array-access descriptors derived from GPU-specific kernels, which can thus be adapted for CPUs by (1) removing all the unwanted local-memory arrays together with the obsolete barrier statements and (2) optimizing the coalesced kernel code with vectorization and locality re-exploitation. Moreover, we have developed an automated tool chain that makes this transformation of GPU-specific OpenCL kernels into a CPU-friendly form, which is accompanied with a scheduler that forms a new OpenCL runtime. Experiments show that the automated transformation can improve OpenCL kernel performance on a multi-core CPU by an average factor of 3.24. Satisfactory performance improvements axe also achieved on Intel's many-integrated-core coprocessor. The resultant performance on both architectures is better than or comparable with the corresponding OpenMP performance. 展开更多
关键词 OpenCL Performance portability Multi-core/many-core cpu Analysis-based transformation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部