期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多核协同表示分类的脑肿瘤分割算法 被引量:6
1
作者 葛婷 詹天明 牟善祥 《南京理工大学学报》 EI CAS CSCD 北大核心 2019年第5期578-585,共8页
为了从脑核磁共振(MR)图像中分割出脑肿瘤区域,为疾病诊断和手术导航提供参考,该文在核方法框架下提出一种基于多核协同表示分类的脑肿瘤分割算法。首先对脑肿瘤图像进行多尺度超像素分割,并构造基于超像素区域的空间特征,在多核框架中... 为了从脑核磁共振(MR)图像中分割出脑肿瘤区域,为疾病诊断和手术导航提供参考,该文在核方法框架下提出一种基于多核协同表示分类的脑肿瘤分割算法。首先对脑肿瘤图像进行多尺度超像素分割,并构造基于超像素区域的空间特征,在多核框架中利用多核协同表示分类方法,将原始光谱信息与所提取的多尺度空间特征融合并应用于脑肿瘤图像的分类,最后结合临床特征实现了脑肿瘤区域的分割。在MICCAI BraTS 2012和2013数据集上的测试结果表明,与现有脑肿瘤分割算法相比,该文方法能够更好地提取脑肿瘤区域,并具有较好的分割精度。 展开更多
关键词 磁共振图像 脑肿瘤 图像分割 超像素 多尺度 多核协同表示分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部