期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多核协同表示分类的脑肿瘤分割算法
被引量:
6
1
作者
葛婷
詹天明
牟善祥
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2019年第5期578-585,共8页
为了从脑核磁共振(MR)图像中分割出脑肿瘤区域,为疾病诊断和手术导航提供参考,该文在核方法框架下提出一种基于多核协同表示分类的脑肿瘤分割算法。首先对脑肿瘤图像进行多尺度超像素分割,并构造基于超像素区域的空间特征,在多核框架中...
为了从脑核磁共振(MR)图像中分割出脑肿瘤区域,为疾病诊断和手术导航提供参考,该文在核方法框架下提出一种基于多核协同表示分类的脑肿瘤分割算法。首先对脑肿瘤图像进行多尺度超像素分割,并构造基于超像素区域的空间特征,在多核框架中利用多核协同表示分类方法,将原始光谱信息与所提取的多尺度空间特征融合并应用于脑肿瘤图像的分类,最后结合临床特征实现了脑肿瘤区域的分割。在MICCAI BraTS 2012和2013数据集上的测试结果表明,与现有脑肿瘤分割算法相比,该文方法能够更好地提取脑肿瘤区域,并具有较好的分割精度。
展开更多
关键词
核
磁共振图像
脑肿瘤
图像分割
超像素
多尺度
多核协同表示分类
下载PDF
职称材料
题名
基于多核协同表示分类的脑肿瘤分割算法
被引量:
6
1
作者
葛婷
詹天明
牟善祥
机构
南京理工大学电子工程与光电技术学院
金陵科技学院理学院
南京审计大学信息与工程学院
出处
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2019年第5期578-585,共8页
文摘
为了从脑核磁共振(MR)图像中分割出脑肿瘤区域,为疾病诊断和手术导航提供参考,该文在核方法框架下提出一种基于多核协同表示分类的脑肿瘤分割算法。首先对脑肿瘤图像进行多尺度超像素分割,并构造基于超像素区域的空间特征,在多核框架中利用多核协同表示分类方法,将原始光谱信息与所提取的多尺度空间特征融合并应用于脑肿瘤图像的分类,最后结合临床特征实现了脑肿瘤区域的分割。在MICCAI BraTS 2012和2013数据集上的测试结果表明,与现有脑肿瘤分割算法相比,该文方法能够更好地提取脑肿瘤区域,并具有较好的分割精度。
关键词
核
磁共振图像
脑肿瘤
图像分割
超像素
多尺度
多核协同表示分类
Keywords
magnetic resonance images
brain tumors
image segmentation
superpixel
multi-scales
multi-kernel collaborative representation classification
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多核协同表示分类的脑肿瘤分割算法
葛婷
詹天明
牟善祥
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2019
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部