A capacity model of multi-phase signalized intersections is derived by a stopping-line method. It is simplified with two normal situations: one situation involves one straight lane and one left-turn lane; the other s...A capacity model of multi-phase signalized intersections is derived by a stopping-line method. It is simplified with two normal situations: one situation involves one straight lane and one left-turn lane; the other situation involves two straight lanes and one left-turn lane. The results show that the capacity is mainly relative to signal cycle length, phase length, intersection layout and following time. With regard to the vehicles arrival rates, the optimal model is derived based on each phase's remaining time balance, and it is solved by Lagrange multipliers. Therefore, the calculation models of the optimal signal cycle length and phase lengths are derived and simplified. Compared to the existing models, the proposed model is more convenient and practical. Finally, a practical intersection is chosen and its signal cycles and phase lengths are calculated by the proposed model.展开更多
This study is devoted to the experimental validation of the multi-type sensor placement and response reconstruction method for structural health monitoring of long-span suspension bridges. The method for multi-type se...This study is devoted to the experimental validation of the multi-type sensor placement and response reconstruction method for structural health monitoring of long-span suspension bridges. The method for multi-type sensor placement and response reconstruction is briefly described. A test bed, comprising of a physical model and an updated finite element (P-E) model of a long-span suspension bridge is also concisely introduced. The proposed method is then applied to the test bed; the equation of motion of the test bed subject to ground motion, the objective function for sensor location optimization, the principles for mode selection and multi-type response reconstruction are established. A numerical study using the updated FE model is performed to select the sensor types, numbers, and locations. Subsequently, with the identified sensor locations and some practical considerations, fiber Bragg grating (FBG) sensors, laser displacement transducers, and accelerometers are installed on the physical bridge model. Finally, experimental investigations are conducted to validate the proposed method. The experimental results show that the reconstructed responses using the measured responses from the limited number of multitype sensors agree well with the actual bridge responses. The proposed method is validated to be feasible and effective for the monitoring of structural behavior of longspan suspension bridges.展开更多
基金China Postdoctoral Science Foundation(No.2004035208)Jiangsu Communication Science Foundation (No.06Y36)
文摘A capacity model of multi-phase signalized intersections is derived by a stopping-line method. It is simplified with two normal situations: one situation involves one straight lane and one left-turn lane; the other situation involves two straight lanes and one left-turn lane. The results show that the capacity is mainly relative to signal cycle length, phase length, intersection layout and following time. With regard to the vehicles arrival rates, the optimal model is derived based on each phase's remaining time balance, and it is solved by Lagrange multipliers. Therefore, the calculation models of the optimal signal cycle length and phase lengths are derived and simplified. Compared to the existing models, the proposed model is more convenient and practical. Finally, a practical intersection is chosen and its signal cycles and phase lengths are calculated by the proposed model.
文摘This study is devoted to the experimental validation of the multi-type sensor placement and response reconstruction method for structural health monitoring of long-span suspension bridges. The method for multi-type sensor placement and response reconstruction is briefly described. A test bed, comprising of a physical model and an updated finite element (P-E) model of a long-span suspension bridge is also concisely introduced. The proposed method is then applied to the test bed; the equation of motion of the test bed subject to ground motion, the objective function for sensor location optimization, the principles for mode selection and multi-type response reconstruction are established. A numerical study using the updated FE model is performed to select the sensor types, numbers, and locations. Subsequently, with the identified sensor locations and some practical considerations, fiber Bragg grating (FBG) sensors, laser displacement transducers, and accelerometers are installed on the physical bridge model. Finally, experimental investigations are conducted to validate the proposed method. The experimental results show that the reconstructed responses using the measured responses from the limited number of multitype sensors agree well with the actual bridge responses. The proposed method is validated to be feasible and effective for the monitoring of structural behavior of longspan suspension bridges.