针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用...针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用3个基本矢量,并根据价值函数计算矢量作用时间,降低了输出电流纹波;其次,通过建立不同矢量作用下的电流梯度方程组,实现电流梯度数据的实时更新,消除了停滞现象;再次,分析采样扰动对MFPCC的影响,采用扩张状态观测器估计采样扰动以补偿预测电流控制,抑制其对输出电流的影响。最后,通过仿真和实验,对所提方法的有效性进行了验证。展开更多
文摘针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用3个基本矢量,并根据价值函数计算矢量作用时间,降低了输出电流纹波;其次,通过建立不同矢量作用下的电流梯度方程组,实现电流梯度数据的实时更新,消除了停滞现象;再次,分析采样扰动对MFPCC的影响,采用扩张状态观测器估计采样扰动以补偿预测电流控制,抑制其对输出电流的影响。最后,通过仿真和实验,对所提方法的有效性进行了验证。
文摘针对新能源汽车充电(G2V)三相整流器为研究对象,研究基于模型预测控制(model predictive control,MPC)的充电控制策略。传统的MPC算法需要准确的系统模型参数,而当控制器中使用的模型参数与主电路实际参数不匹配时,控制性能可能发生恶化,影响整流器充电控制性能。针对此问题,该文将系统参数不匹配作为扩张状态观测器(extended state observer,ESO)扩张出来的扰动项而进行估计,并将扰动进行补偿,从而设计一种基于ESO的MPC充电控制策略。该方法仅使用了系统的输入和输出数据,而不需要精确的系统模型,因此即使模型参数不匹配时,ESO也能够将不匹配项作为扰动而对预测电流进行准确估计,从而提高MPC对参数变化及不匹配的鲁棒性。仿真与实验结果验证了该方法的可行性和有效性。