Multi-pylon multi-span suspension bridge is a new type super flexible structure system, and the rigidity design of middle pylon is one of the main difficult technical issues. Due to the requirements of longitudinal ri...Multi-pylon multi-span suspension bridge is a new type super flexible structure system, and the rigidity design of middle pylon is one of the main difficult technical issues. Due to the requirements of longitudinal rigidity, the structural form and the corresponding foundation type of middle pylon are different from those of the ordinary steel pylon, and the complicated dynamic characteristics make the calculation quite difficult. In this article, exploration has been made in selection of similarity ratio and model materials, section simulation, restriction conditions simulation, fixing of mass blocks, fabrication scheme and testing method by taking into account different construction and working conditions such as restriction conditions and working environment of a three-pylon suspension bridge, to conduct the test experimental design of the dynamic behavior of the middle pylon, with the purpose to reveal its dynamic characteristics and make comparison and analysis with theoretical assumptions, to provide basis for anti-wind and anti-seismic design and reference for the design and research of three-pylon two-span suspension bridges in the future.展开更多
This paper studies the multi-objective optimization of space station short-term mission planning(STMP), which aims to obtain a mission-execution plan satisfying multiple planning demands. The planning needs to allocat...This paper studies the multi-objective optimization of space station short-term mission planning(STMP), which aims to obtain a mission-execution plan satisfying multiple planning demands. The planning needs to allocate the execution time effectively, schedule the on-board astronauts properly, and arrange the devices reasonably. The STMP concept models for problem definitions and descriptions are presented, and then an STMP multi-objective planning model is developed. To optimize the STMP problem, a Non-dominated Sorting Genetic Algorithm II(NSGA-II) is adopted and then improved by incorporating an iterative conflict-repair strategy based on domain knowledge. The proposed approach is demonstrated by using a test case with thirty-five missions, eighteen devices and three astronauts. The results show that the established STMP model is effective, and the improved NSGA-II can successfully obtain the multi-objective optimal plans satisfying all constraints considered. Moreover, through contrast tests on solving the STMP problem, the NSGA-II shows a very competitive performance with respect to the Strength Pareto Evolutionary Algorithm II(SPEA-II) and the Multi-objective Particle Swarm Optimization(MOPSO).展开更多
文摘Multi-pylon multi-span suspension bridge is a new type super flexible structure system, and the rigidity design of middle pylon is one of the main difficult technical issues. Due to the requirements of longitudinal rigidity, the structural form and the corresponding foundation type of middle pylon are different from those of the ordinary steel pylon, and the complicated dynamic characteristics make the calculation quite difficult. In this article, exploration has been made in selection of similarity ratio and model materials, section simulation, restriction conditions simulation, fixing of mass blocks, fabrication scheme and testing method by taking into account different construction and working conditions such as restriction conditions and working environment of a three-pylon suspension bridge, to conduct the test experimental design of the dynamic behavior of the middle pylon, with the purpose to reveal its dynamic characteristics and make comparison and analysis with theoretical assumptions, to provide basis for anti-wind and anti-seismic design and reference for the design and research of three-pylon two-span suspension bridges in the future.
基金supported by the National Natural Science Foundation of China(Grant No.11402295)the Science Project of National University of Defense Technology(Grant No.JC14-01-05)the Hunan Provincial Natural Science Foundation of China(Grant No.2015JJ3020)
文摘This paper studies the multi-objective optimization of space station short-term mission planning(STMP), which aims to obtain a mission-execution plan satisfying multiple planning demands. The planning needs to allocate the execution time effectively, schedule the on-board astronauts properly, and arrange the devices reasonably. The STMP concept models for problem definitions and descriptions are presented, and then an STMP multi-objective planning model is developed. To optimize the STMP problem, a Non-dominated Sorting Genetic Algorithm II(NSGA-II) is adopted and then improved by incorporating an iterative conflict-repair strategy based on domain knowledge. The proposed approach is demonstrated by using a test case with thirty-five missions, eighteen devices and three astronauts. The results show that the established STMP model is effective, and the improved NSGA-II can successfully obtain the multi-objective optimal plans satisfying all constraints considered. Moreover, through contrast tests on solving the STMP problem, the NSGA-II shows a very competitive performance with respect to the Strength Pareto Evolutionary Algorithm II(SPEA-II) and the Multi-objective Particle Swarm Optimization(MOPSO).