Along with the development of motion capture technique, more and more 3D motion databases become available. In this paper, a novel approach is presented for motion recognition and retrieval based on ensemble HMM (hidd...Along with the development of motion capture technique, more and more 3D motion databases become available. In this paper, a novel approach is presented for motion recognition and retrieval based on ensemble HMM (hidden Markov model) learning. Due to the high dimensionality of motion’s features, Isomap nonlinear dimension reduction is used for training data of ensemble HMM learning. For handling new motion data, Isomap is generalized based on the estimation of underlying eigen- functions. Then each action class is learned with one HMM. Since ensemble learning can effectively enhance supervised learning, ensembles of weak HMM learners are built. Experiment results showed that the approaches are effective for motion data recog- nition and retrieval.展开更多
Multi-way principal component analysis (MPCA) is the most widely utilized multivariate statistical process control method for batch processes. Previous research on MPCA has commonly agreed that it is not a suitable me...Multi-way principal component analysis (MPCA) is the most widely utilized multivariate statistical process control method for batch processes. Previous research on MPCA has commonly agreed that it is not a suitable method for multiphase batch process analysis. In this paper, abundant phase information is revealed by way of partitioning MPCA model, and a new phase identification method based on global dynamic information is proposed. The application to injection molding shows that it is a feasible and effective method for multiphase batch process knowledge understanding, phase division and process monitoring.展开更多
Magnetorheological (MR) Dampers offer rapid variation in damping properties, making them ideal in semi-active control of structures. They potentially offer highly reliable operation and can be viewed as fail safe, i...Magnetorheological (MR) Dampers offer rapid variation in damping properties, making them ideal in semi-active control of structures. They potentially offer highly reliable operation and can be viewed as fail safe, in that in the worst case, they become passive dampers. Perfect understanding of the response is necessary when implementing these in operation in conjunction with a control mechanism. There are many models used to predict the behavior of MR dampers. One of these is the Bouc-Wen model. It is extremely popular as it is numerically tractable, very versatile and can exhibit a wide range of hysteretic behavior. It is necessary to first identify the characteristic parameters of the model before response prediction is possible. However, characteristic parameters identification of the Bouc-Wen model needs an experimental base, which has its own limitations. The extraction of these characteristic parameters by trial and error and optimization techniques leaves significant difference between observed and simulated results. This paper deals with a new approach to extract characteristic parameters for the Bouc-Wen model.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 60533090 and 60525108), the National Basic Research Program (973) of China (No. 2002CB312101), and the Science and Technology Project of Zhejiang Province (Nos. 2005C13032 and 2005C11001-05), China
文摘Along with the development of motion capture technique, more and more 3D motion databases become available. In this paper, a novel approach is presented for motion recognition and retrieval based on ensemble HMM (hidden Markov model) learning. Due to the high dimensionality of motion’s features, Isomap nonlinear dimension reduction is used for training data of ensemble HMM learning. For handling new motion data, Isomap is generalized based on the estimation of underlying eigen- functions. Then each action class is learned with one HMM. Since ensemble learning can effectively enhance supervised learning, ensembles of weak HMM learners are built. Experiment results showed that the approaches are effective for motion data recog- nition and retrieval.
基金Supported by the Guangzhou Scientific and Technological Project (2012J5100032)Nansha District Independent Innovation Project (201103003)
文摘Multi-way principal component analysis (MPCA) is the most widely utilized multivariate statistical process control method for batch processes. Previous research on MPCA has commonly agreed that it is not a suitable method for multiphase batch process analysis. In this paper, abundant phase information is revealed by way of partitioning MPCA model, and a new phase identification method based on global dynamic information is proposed. The application to injection molding shows that it is a feasible and effective method for multiphase batch process knowledge understanding, phase division and process monitoring.
文摘Magnetorheological (MR) Dampers offer rapid variation in damping properties, making them ideal in semi-active control of structures. They potentially offer highly reliable operation and can be viewed as fail safe, in that in the worst case, they become passive dampers. Perfect understanding of the response is necessary when implementing these in operation in conjunction with a control mechanism. There are many models used to predict the behavior of MR dampers. One of these is the Bouc-Wen model. It is extremely popular as it is numerically tractable, very versatile and can exhibit a wide range of hysteretic behavior. It is necessary to first identify the characteristic parameters of the model before response prediction is possible. However, characteristic parameters identification of the Bouc-Wen model needs an experimental base, which has its own limitations. The extraction of these characteristic parameters by trial and error and optimization techniques leaves significant difference between observed and simulated results. This paper deals with a new approach to extract characteristic parameters for the Bouc-Wen model.