目的探讨脊髓型颈椎病诊断中3.0T高清弥散多次激发弥散加权成像(readout segmentation of long variable echo-trains,RESOLVE-DWI)的应用价值。方法选取本院收治的脊髓型颈椎病患者60例为观察组,于同期本院接收的健康体检者中选取60例...目的探讨脊髓型颈椎病诊断中3.0T高清弥散多次激发弥散加权成像(readout segmentation of long variable echo-trains,RESOLVE-DWI)的应用价值。方法选取本院收治的脊髓型颈椎病患者60例为观察组,于同期本院接收的健康体检者中选取60例为对照组,均采用3.0T高清弥散RESOLVE-DWI序列进行检查,对比分析两组检查情况。结果观察组病变或受压部位的ADC值是(1.35±0.13)×10^-3 mm^2/s,比对照组的(1.01±0.03)×10^-3 mm^2/s及观察组中相对正常部位的(1.02±0.02)×10^-3 mm^2/s高,差异有统计学意义(P<0.05);RESOLVE-DWI序列图像质量评分较T 2WI高,差异有统计学意义(P<0.05);RESOLVE-DWI的敏感性为96.7%,特异性为95.0%,分别较T 2WI的敏感性91.7%、特异性88.3%高,差异有统计学意义(P<0.05)。结论3.0T高清弥散RESOLVE-DWI序列图像质量高,可对脊髓、解剖结构进行清晰显示,应用于脊髓型颈椎病诊断中准确率、敏感性高,值得选用。展开更多
This paper deals with the existence and multiplicity of nontrivial solutions to a weighted nonlinear elliptic system with nonlinear homogeneous boundary condition in a bounded domain. By using the Caffarelli-Kohn-Nire...This paper deals with the existence and multiplicity of nontrivial solutions to a weighted nonlinear elliptic system with nonlinear homogeneous boundary condition in a bounded domain. By using the Caffarelli-Kohn-Nirenberg inequality and variational method, we prove that the system has at least two nontrivial solutions when the parameter λ belongs to a certain subset of R.展开更多
文摘This paper deals with the existence and multiplicity of nontrivial solutions to a weighted nonlinear elliptic system with nonlinear homogeneous boundary condition in a bounded domain. By using the Caffarelli-Kohn-Nirenberg inequality and variational method, we prove that the system has at least two nontrivial solutions when the parameter λ belongs to a certain subset of R.