The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which e...The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.展开更多
In this paper, we consider the existence of multiple positive solutions of discrete boundary value problem. The theory of fixed point index is used here to derive the existence theorem.
The existence of n positive solutions is studied for a class of fourth-order elastic beam equations where one end is fixed and other end is movable. Here, n is an arbitrary natural number. Our results show that the cl...The existence of n positive solutions is studied for a class of fourth-order elastic beam equations where one end is fixed and other end is movable. Here, n is an arbitrary natural number. Our results show that the class of equations may have n positive solutions provided the “heights” of the nonlinear term are appropriate on some bounded sets.展开更多
文摘The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.
文摘In this paper, we consider the existence of multiple positive solutions of discrete boundary value problem. The theory of fixed point index is used here to derive the existence theorem.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10571085).
文摘The existence of n positive solutions is studied for a class of fourth-order elastic beam equations where one end is fixed and other end is movable. Here, n is an arbitrary natural number. Our results show that the class of equations may have n positive solutions provided the “heights” of the nonlinear term are appropriate on some bounded sets.