Membrane-based separation processes are new technology combined membrane separation with conventional separation. Hydrophobic porous membranes are often used in these processes. The structure of hydrophobic porous mem...Membrane-based separation processes are new technology combined membrane separation with conventional separation. Hydrophobic porous membranes are often used in these processes. The structure of hydrophobic porous membrane has significant effect on mass transfer process. The permeabilities of five kinds of gas, He, N2, O2, CO2 and water vapor, across six polytetrafluoroethylene(PTFE) flat membranes were tested experimentally. Results indicated that the greater the membrane mean pore size and the wider the pore size distribution are, the higher the gas permeability. A gas permeation model, including the effects of membrane structure parameter and gas properties, was established. A comprehensive characteristic parameter (including porosity, thickness and tortuosity) was found more effective to express the influence of membrane structure in gas permeation process. The predicted permeation coefficients were in good agreement with experimental data.展开更多
The influence of sandstorms on train aerodynamic performance and safe running was studied in response to the frequent occurrence of sandstorm weather in north China.An Eulerian two-phase model in the computational flu...The influence of sandstorms on train aerodynamic performance and safe running was studied in response to the frequent occurrence of sandstorm weather in north China.An Eulerian two-phase model in the computational fluid dynamic (CFD) software FLUENT,validated with published data,was used to solve the gas-solid multiphase flow of a sandstorm around a train.The train aerodynamic performance under different sandstorm levels and no sand conditions was then simulated.Results showed that in sandstorm weather,the drag,lift,side forces and overturning moment increase by variable degrees.Based on a numerical analysis of aerodynamic characteristics,an equation of train stability was also derived using the theory of moment balance from the view of dynamics.A recommended speed limit of a train under different sandstorm levels was calculated based on the stability analysis.展开更多
This paper concerns the development of high-order multidimensional gas kinetic schemes for the Navier-Stokes solutions.In the current approach,the state-of-the-art WENO-type initial reconstruction and the gas-kinetic ...This paper concerns the development of high-order multidimensional gas kinetic schemes for the Navier-Stokes solutions.In the current approach,the state-of-the-art WENO-type initial reconstruction and the gas-kinetic evolution model are used in the construction of the scheme.In order to distinguish the physical and numerical requirements to recover a physical solution in a discretized space,two particle collision times will be used in the current high-order gas-kinetic scheme(GKS).Different from the low order gas dynamic model of the Riemann solution in the Godunov type schemes,the current method is based on a high-order multidimensional gas evolution model,where the space and time variation of a gas distribution function along a cell interface from an initial piecewise discontinuous polynomial is fully used in the flux evaluation.The high-order flux function becomes a unification of the upwind and central difference schemes.The current study demonstrates that both the high-order initial reconstruction and high-order gas evolution model are important in the design of a high-order numerical scheme.Especially,for a compact method,the use of a high-order local evolution solution in both space and time may become even more important,because a short stencil and local low order dynamic evolution model,i.e.,the Riemann solution,are contradictory,where valid mechanism for the update of additional degrees of freedom becomes limited.展开更多
Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes ove...Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations(basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.展开更多
基金Supported by the 863 Hi-Tech. Research and Development Program of China (No. 2002AA649280, No. 2002AA304030),National Natural Science Foundation of China (No. 20206002), Beijing NOVA program (H013610250112), University Doctor Science Foundation of China
文摘Membrane-based separation processes are new technology combined membrane separation with conventional separation. Hydrophobic porous membranes are often used in these processes. The structure of hydrophobic porous membrane has significant effect on mass transfer process. The permeabilities of five kinds of gas, He, N2, O2, CO2 and water vapor, across six polytetrafluoroethylene(PTFE) flat membranes were tested experimentally. Results indicated that the greater the membrane mean pore size and the wider the pore size distribution are, the higher the gas permeability. A gas permeation model, including the effects of membrane structure parameter and gas properties, was established. A comprehensive characteristic parameter (including porosity, thickness and tortuosity) was found more effective to express the influence of membrane structure in gas permeation process. The predicted permeation coefficients were in good agreement with experimental data.
基金Project(No.2009BAG12A01-C03) supported by the National Key Technology R&D Program of China
文摘The influence of sandstorms on train aerodynamic performance and safe running was studied in response to the frequent occurrence of sandstorm weather in north China.An Eulerian two-phase model in the computational fluid dynamic (CFD) software FLUENT,validated with published data,was used to solve the gas-solid multiphase flow of a sandstorm around a train.The train aerodynamic performance under different sandstorm levels and no sand conditions was then simulated.Results showed that in sandstorm weather,the drag,lift,side forces and overturning moment increase by variable degrees.Based on a numerical analysis of aerodynamic characteristics,an equation of train stability was also derived using the theory of moment balance from the view of dynamics.A recommended speed limit of a train under different sandstorm levels was calculated based on the stability analysis.
基金supported by Hong Kong Research Grant Council(Grant No.621011)HKUST research fund(Grant No.SRFI11SC05)
文摘This paper concerns the development of high-order multidimensional gas kinetic schemes for the Navier-Stokes solutions.In the current approach,the state-of-the-art WENO-type initial reconstruction and the gas-kinetic evolution model are used in the construction of the scheme.In order to distinguish the physical and numerical requirements to recover a physical solution in a discretized space,two particle collision times will be used in the current high-order gas-kinetic scheme(GKS).Different from the low order gas dynamic model of the Riemann solution in the Godunov type schemes,the current method is based on a high-order multidimensional gas evolution model,where the space and time variation of a gas distribution function along a cell interface from an initial piecewise discontinuous polynomial is fully used in the flux evaluation.The high-order flux function becomes a unification of the upwind and central difference schemes.The current study demonstrates that both the high-order initial reconstruction and high-order gas evolution model are important in the design of a high-order numerical scheme.Especially,for a compact method,the use of a high-order local evolution solution in both space and time may become even more important,because a short stencil and local low order dynamic evolution model,i.e.,the Riemann solution,are contradictory,where valid mechanism for the update of additional degrees of freedom becomes limited.
基金supported by a grant from 2016 Research Funds of Andong National University
文摘Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations(basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.