期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于弱监督多注意融合网络的细粒度图像识别
1
作者 黄程 曾志高 +2 位作者 朱文球 文志强 袁鑫攀 《现代信息科技》 2022年第21期78-82,87,共6页
针对细粒度图像识别任务中常见的判别性区域难以定位的问题,提出了一种弱监督多注意融合网络,该网络通过两种注意力模块的组合实现判别性区域的准确定位。其中,双域自注意力模块将多种注意力结合起来,强化模型对关键特征的提取。混合卷... 针对细粒度图像识别任务中常见的判别性区域难以定位的问题,提出了一种弱监督多注意融合网络,该网络通过两种注意力模块的组合实现判别性区域的准确定位。其中,双域自注意力模块将多种注意力结合起来,强化模型对关键特征的提取。混合卷积注意力融合模块分别通过并行和串行架构融合不同尺度的注意力,充分获取特征间的全局及局部联系。实验结果表明,所提出的方法是有效的,与基线模型的结果相比有较大幅度的提升。 展开更多
关键词 细粒度图像分类 深度学习 注意力机制 多注意融合
下载PDF
Adaptive multi-modal feature fusion for far and hard object detection
2
作者 LI Yang GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第2期232-241,共10页
In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is pro... In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is proposed,which makes use of multi-neighborhood information of voxel and image information.Firstly,design an improved ResNet that maintains the structure information of far and hard objects in low-resolution feature maps,which is more suitable for detection task.Meanwhile,semantema of each image feature map is enhanced by semantic information from all subsequent feature maps.Secondly,extract multi-neighborhood context information with different receptive field sizes to make up for the defect of sparseness of point cloud which improves the ability of voxel features to represent the spatial structure and semantic information of objects.Finally,propose a multi-modal feature adaptive fusion strategy which uses learnable weights to express the contribution of different modal features to the detection task,and voxel attention further enhances the fused feature expression of effective target objects.The experimental results on the KITTI benchmark show that this method outperforms VoxelNet with remarkable margins,i.e.increasing the AP by 8.78%and 5.49%on medium and hard difficulty levels.Meanwhile,our method achieves greater detection performance compared with many mainstream multi-modal methods,i.e.outperforming the AP by 1%compared with that of MVX-Net on medium and hard difficulty levels. 展开更多
关键词 3D object detection adaptive fusion multi-modal data fusion attention mechanism multi-neighborhood features
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部