期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
四维时空兴趣点提取结合多流形判别分析的人体动作识别 被引量:10
1
作者 王向前 张月芬 《湘潭大学自然科学学报》 CAS 北大核心 2016年第1期111-114,共4页
针对人体动作识别方法较差的稳定性和视角选择的局限性问题,提出了四维时空兴趣点提取结合多流形判别分析(MMDA)的人体动作识别方法.首先,将每个动作通过三维空间体和四维时空兴趣点投影到任意视角;然后,构建运动历史图像和非运动历史图... 针对人体动作识别方法较差的稳定性和视角选择的局限性问题,提出了四维时空兴趣点提取结合多流形判别分析(MMDA)的人体动作识别方法.首先,将每个动作通过三维空间体和四维时空兴趣点投影到任意视角;然后,构建运动历史图像和非运动历史图像,并使用类增强主成分分析进行降维;最后,将降维后的矩阵构建为多流形,计算测试图像流形与各个训练图像流形之间的距离,利用最近邻分类器完成识别.在IXMAS数据集上的实验结果表明,相比其他几种动作识别方法,提出的方法取得了更高的识别率,且对任意视角都具有较好的鲁棒性. 展开更多
关键词 视角不变 人体动作识别 多流形判别分析(mmda) 四维时空感兴趣点 最近邻分类器
下载PDF
基于流形距离的半监督判别分析 被引量:22
2
作者 魏莱 王守觉 《软件学报》 EI CSCD 北大核心 2010年第10期2445-2453,共9页
大量无类别标签的数据具有对分类有用的信息,有效地利用这些信息来提高分类精确度,是半监督分类研究的主要内容.提出了一种基于流形距离的半监督判别分析(semi-supervised discriminant analysis based on manifold distance,简称SSDA)... 大量无类别标签的数据具有对分类有用的信息,有效地利用这些信息来提高分类精确度,是半监督分类研究的主要内容.提出了一种基于流形距离的半监督判别分析(semi-supervised discriminant analysis based on manifold distance,简称SSDA)算法,通过定义的流形距离,能够选择位于流形上的数据点的同类近邻点、异类近邻点以及全局近邻点,并依据流形距离定义数据点与其各近邻点之间的相似度,利用这种相似度度量构造算法的目标函数.通过在ORL,YALE人脸数据库上的实验表明,与现有算法相比,数据集通过该算法降维后,能够使基于距离的识别算法具有更高的分类精确度.同时,为了解决非线性降维问题,提出了Kernel SSDA,同样通过实验验证了算法的有效性. 展开更多
关键词 主成分分析 线性判别分析 流形距离 半监督判别分析
下载PDF
流形判别分析和支持向量机的恒星光谱数据自动分类方法 被引量:3
3
作者 刘忠宝 王召巴 赵文娟 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第1期263-266,共4页
尽管经典的分类方法支持向量机SVM在天文学领域广泛应用,但其只考虑类间的绝对间隔而忽略类内的分布性状,因而分类性能有待于进一步提升。鉴于此,提出一种新颖的基于流形判别分析和支持向量机的恒星光谱数据自动分类方法。该方法引入流... 尽管经典的分类方法支持向量机SVM在天文学领域广泛应用,但其只考虑类间的绝对间隔而忽略类内的分布性状,因而分类性能有待于进一步提升。鉴于此,提出一种新颖的基于流形判别分析和支持向量机的恒星光谱数据自动分类方法。该方法引入流形判别分析的两个重要概念:基于流形的类内离散度MW和基于流形的类间离散度MB。所提方法找到的分类面同时保证MW最小且MB最大。可建立相应最优化问题,然后将原最优化问题转化为QP对偶形式求得支持向量和判别函数,最后利用判别函数判断测试样本的类属。该方法的最大优势在于进行分类决策时,不仅考虑样本的类间信息和分布特征,而且还保持了各类的局部流形结构。SDSS恒星光谱数据上的比较实验表明该方法的有效性。 展开更多
关键词 自动分类 恒星光谱数据 流形判别分析 支持向量机
下载PDF
HOG和多流形判别分析相融合的人脸识别 被引量:1
4
作者 冷爱莲 蔡晓雯 李志斌 《计算机工程与应用》 CSCD 北大核心 2015年第13期153-156,196,共5页
为了提高人脸的识别率,提出一种方向梯度直方图和多流形判别分析相融合的人脸识别算法。将一幅图像划分为多个子块图像块,并采用方向梯度直方图算法对每一个小块进行处理;采用多流形判别分析提取特征,并采用最小二乘支持向量机建立分类... 为了提高人脸的识别率,提出一种方向梯度直方图和多流形判别分析相融合的人脸识别算法。将一幅图像划分为多个子块图像块,并采用方向梯度直方图算法对每一个小块进行处理;采用多流形判别分析提取特征,并采用最小二乘支持向量机建立分类器对人脸进行分类和识别;在Yale和AR人脸库进行仿真实验。实验结果表明,相对于传统人脸别算法,该算法不仅提高了人脸识别率和识别速度,并且对光照和姿态变化具有较强的鲁棒性。 展开更多
关键词 人脸识别 特征提取 方向梯度直方图 多流形判别分析
下载PDF
基于分块聚类的多流形判别分析人脸识别 被引量:1
5
作者 王丽艳 李伟生 《计算机应用研究》 CSCD 北大核心 2014年第9期2853-2855,共3页
针对传统的人脸识别算法在处理单样本人脸识别时由于训练样本不足而影响识别率的问题,提出了一种基于分块聚类的多流形判别分析(MMDA)算法。将每个单训练样本划分成若干大小相等且互不重叠的局部小块,利用聚类算法将局部小块聚类到各个... 针对传统的人脸识别算法在处理单样本人脸识别时由于训练样本不足而影响识别率的问题,提出了一种基于分块聚类的多流形判别分析(MMDA)算法。将每个单训练样本划分成若干大小相等且互不重叠的局部小块,利用聚类算法将局部小块聚类到各个类所属的流形上,并使用特征变换最大化类与类之间的分离性;最后,计算出测试人脸的流形与所有训练样本流形之间的距离,采用最近邻分类器完成人脸的识别。在ORL及FERET两大人脸数据库上的实验验证了算法的有效性及可靠性,识别率可分别高达77.22%、57.59%,实验结果表明,相比几种较为先进的人脸识别算法,该算法在处理单训练样本人脸识别问题时取得了更好的识别效果。 展开更多
关键词 人脸识别 单训练样本 多流形判别分析 子空间学习 分块聚类
下载PDF
基于流形判别分析的全局保序学习机
6
作者 张静 刘忠宝 《电子科技大学学报》 EI CAS CSCD 北大核心 2015年第6期911-916,共6页
当前主流分类方法在分类决策时无法同时考虑样本的全局特征和局部特征,而且大多算法仅关注各类样本的可分性,往往忽略样本之间的相对关系。为了解决上述问题,提出了基于流形判别分析的全局保序学习机。该方法引入流形判别分析来反映样... 当前主流分类方法在分类决策时无法同时考虑样本的全局特征和局部特征,而且大多算法仅关注各类样本的可分性,往往忽略样本之间的相对关系。为了解决上述问题,提出了基于流形判别分析的全局保序学习机。该方法引入流形判别分析来反映样本的全局特征和局部特征;通过保持各类样本中心的相对关系不变进而实现保持全体样本的先后顺序不变;借鉴核心向量机有关理论和方法,通过建立所提方法与核心向量机对偶形式的等价关系实现大规模分类。人工数据集和标准数据集上的比较实验验证了该方法的有效性。 展开更多
关键词 全局保序 大规模分类 流形判别分析 支持向量机
下载PDF
多流形判别分析在人脸识别中的研究
7
作者 万康康 马龙 周煜坤 《计算机应用与软件》 CSCD 北大核心 2014年第10期189-191,196,共4页
局部保持投影LPP(Locality Preserving Projection)是一种有效的非线性降维方法,能够使投影降维后的数据与原输入空间中的相似局部结构保持一致,但是该方法没有充分利用类间样本点的权重等重要信息。为了解决这个问题,提出基于Fisher准... 局部保持投影LPP(Locality Preserving Projection)是一种有效的非线性降维方法,能够使投影降维后的数据与原输入空间中的相似局部结构保持一致,但是该方法没有充分利用类间样本点的权重等重要信息。为了解决这个问题,提出基于Fisher准则的多流形判别分析FMMDA(Fisher Multi-Manifold Discriminant Analysis)方法。结合Fisher准则训练样本类内拉普拉斯图和样本均值类间拉普拉斯图,既保持了原样本的相似局部结构,又充分地利用了不同类别之间的权重。在ORL及Yale人脸库上验证了该方法的有效性。与其他几种最先进的方法相比,FMMDA方法取得了更好的识别效果。 展开更多
关键词 人脸识别 特征提取 局部保持投影 FISHER准则 多流形判别分析
下载PDF
一种改进的多流形判别分析方法在特征提取中的应用
8
作者 张玉娇 《计算机应用与软件》 CSCD 2015年第9期175-180,共6页
传统的多流形判别分析(MMDA)方法要求每类样本数目必须相同,这在实际中往往很难满足,因此限制了它的应用。针对此问题,提出一种改进的多流形判别分析(IMMDA)方法。该方法去除了MMDA中的限制条件,用类内图和类间图来描述类内紧凑度和类... 传统的多流形判别分析(MMDA)方法要求每类样本数目必须相同,这在实际中往往很难满足,因此限制了它的应用。针对此问题,提出一种改进的多流形判别分析(IMMDA)方法。该方法去除了MMDA中的限制条件,用类内图和类间图来描述类内紧凑度和类间离散度,类内图可以代表子流形信息,类间图可以代表多流形信息,从而更好地实现分类。在FERET、ORL人脸库及UCI数据集上的实验证明了该方法的有效性。相比其他几种子空间学习方法,该方法取得了更好的识别效果。 展开更多
关键词 多流形学习 线性判别分析 局部保持投影 特征提取
下载PDF
近邻边界Fisher判别分析 被引量:6
9
作者 魏莱 王守觉 +1 位作者 徐菲菲 王睿智 《电子与信息学报》 EI CSCD 北大核心 2009年第3期509-513,共5页
将数据集进行合理的维数约简对于一些机器学习算法效率的提高起着至关重要的影响。该文提出了一种利用数据点邻域信息的线性监督降维算法:近邻边界Fisher判别分析(Neighborhood Margin Fisher Discriminant Analysis,NMFDA)。NMFDA尝试... 将数据集进行合理的维数约简对于一些机器学习算法效率的提高起着至关重要的影响。该文提出了一种利用数据点邻域信息的线性监督降维算法:近邻边界Fisher判别分析(Neighborhood Margin Fisher Discriminant Analysis,NMFDA)。NMFDA尝试将每一数据点邻域内最远的同类数据点和最近的异类数据点之间的边界在投影子空间内尽可能地扩大,从而提高基于距离的识别算法的准确率。同时为了解决非线性降维问题,提出了Kernel NMFDA,通过在几个标准人脸数据库上与其它降维算法的对比识别实验,验证了提出算法的有效性。 展开更多
关键词 维数约简 流形学习 主成份分析 FISHER判别分析 人脸识别
下载PDF
有监督不相关局部Fisher判别分析故障诊断 被引量:7
10
作者 李锋 王家序 +1 位作者 汤宝平 邓成军 《振动工程学报》 EI CSCD 北大核心 2015年第4期657-665,共9页
针对现有流形学习理论用于旋转机械故障诊断存在识别精度不高的问题,提出基于有监督不相关局部Fisher判别分析(Supervised Uncorrelated Local Fisher Discriminant Analysis,SULFDA)的新型故障诊断方法。首先构造全面表征不同故障特征... 针对现有流形学习理论用于旋转机械故障诊断存在识别精度不高的问题,提出基于有监督不相关局部Fisher判别分析(Supervised Uncorrelated Local Fisher Discriminant Analysis,SULFDA)的新型故障诊断方法。首先构造全面表征不同故障特征的时频域特征集,再利用有监督不相关局部Fisher判别分析将高维时频域故障特征集化简为区分度更好的低维特征矢量,并输入到K-近邻分类器中进行故障模式辨识。有监督不相关局部Fisher判别分析在类标签指导下最小化同类流形的离散度并最大化异类流形的离散度来实现类判别,还施加了不相关约束条件使所提取的特征统计不相关,提高了针对旋转机械的故障诊断精度。深沟球轴承故障诊断实验验证了该方法的有效性。 展开更多
关键词 故障诊断 旋转机械 时频域特征集 有监督不相关局部Fisher判别分析 流形学习
下载PDF
基于流形判别分析的半监督支持向量机
11
作者 郝勇智 《山西电子技术》 2015年第6期3-5,19,共4页
半监督分类研究的主要内容是,如何有效地利用大量的无类别标签的数据对分类问题所具有的有用信息。该文提出了一种基于流形判别分析的半监督支持向量机(Semi-Supervised Support Vector Machine Based on Manifold-based Discriminant A... 半监督分类研究的主要内容是,如何有效地利用大量的无类别标签的数据对分类问题所具有的有用信息。该文提出了一种基于流形判别分析的半监督支持向量机(Semi-Supervised Support Vector Machine Based on Manifold-based Discriminant Analysis,简称MDASSVM)。通过定义基于流形的类内离散度和类间离散度,充分利用流形判别分析的性质,进一步改进半监督支持向量机,在分类决策时同时考虑样本的边界信息、分布特征以及局部流形结构,该方法不仅继承了传统降维方法的优势,而且进一步提高降维效率。人造数据集和UCI中的部分实际数据集上的实验结果表明,与现有算法相比,数据集通过该算法降维后,能使半监督支持向量机有更高的分类精度。 展开更多
关键词 流形判别分析 半监学习 支持向量机 分类 降维
下载PDF
基于图嵌入概率半监督判别分析的故障辨识 被引量:5
12
作者 李锋 汤宝平 +1 位作者 王家序 林建辉 《机械工程学报》 EI CAS CSCD 北大核心 2017年第9期92-100,共9页
针对现有旋转机械早期故障辨识方法在训练样本稀少条件下辨识性能极易衰退的关键问题,提出基于图嵌入概率半监督判别分析(Graph-implanted probability-based semi-supervised discriminant analysis,GIPSSDA)维数化简的早期故障辨识方... 针对现有旋转机械早期故障辨识方法在训练样本稀少条件下辨识性能极易衰退的关键问题,提出基于图嵌入概率半监督判别分析(Graph-implanted probability-based semi-supervised discriminant analysis,GIPSSDA)维数化简的早期故障辨识方法。该方法在训练样本稀少条件下用GIPSSDA将训练和待测样本的高维时、频域早期故障特征集化简为类区分性更好的低维特征矢量,提高了终端学习机优化证据理论K近邻分类器(Optimized evidence-theoretic k-nearest neighbor classifier,OET-KNNC)对早期故障的辨识精度。GIPSSDA集成了半监督邻接图嵌入技术,能同时利用待测样本的类判别信息和局部几何结构搜索分类的最优映射子空间,因此在训练样本非常稀少的情况下也能产生较好的分类效果。深沟球轴承早期故障辨识试验验证了该早期故障辨识方法的有效性和优越性。 展开更多
关键词 旋转机械 图嵌入概率半监督判别分析 维数化简 流形学习 早期故障辨识
下载PDF
基于自适应邻域选择的正交局部敏感判别分析 被引量:3
13
作者 高玮军 白万荣 +1 位作者 公维军 陈作汉 《计算机工程与设计》 CSCD 北大核心 2012年第5期1968-1972,共5页
维数灾难是机器学习算法在高维数据上学习经常遇到的难题,基于局部敏感判别分析(locality sensitive discrimi-nant analysis,LSDA),可以很好地解决维数灾难问题。且LSDA构建邻域时不能充分反映流形学习对邻域要求和克服测度扭曲问题,... 维数灾难是机器学习算法在高维数据上学习经常遇到的难题,基于局部敏感判别分析(locality sensitive discrimi-nant analysis,LSDA),可以很好地解决维数灾难问题。且LSDA构建邻域时不能充分反映流形学习对邻域要求和克服测度扭曲问题,利用自适应邻域选择方法来度量邻域,同时,引入施密特正交化获得正交投影矩阵,提出一种自适应邻域选择的正交局部敏感判别分析算法。在ORL和YALE人脸数据库上进行实验,实验结果表明了该算法的有效性。 展开更多
关键词 局部敏感判别分析 流形学习 邻域选择 降维 人脸识别
下载PDF
基于改进局部线性判别分析的化工系统状态监测方法 被引量:2
14
作者 高智勇 陈子胜 +1 位作者 高建民 王荣喜 《计算机集成制造系统》 EI CSCD 北大核心 2016年第4期1097-1103,共7页
针对化工系统监测数据呈现出的强非线性、数据高维等特点,将标注样本的局部线性分析与训练样本的全局分析相结合,提出一种改进的局部线性判别分析方法。利用训练样本标签信息,以异类样本点间的最小欧式距离重新定义异类样本之间的边界,... 针对化工系统监测数据呈现出的强非线性、数据高维等特点,将标注样本的局部线性分析与训练样本的全局分析相结合,提出一种改进的局部线性判别分析方法。利用训练样本标签信息,以异类样本点间的最小欧式距离重新定义异类样本之间的边界,构建了新的局部类间离散度矩阵;引入全局离散度矩阵强化训练样本全局分析,克服了只计算局部离散度矩阵的缺点。在田纳西—伊斯曼过程数据和某企业压缩机组监测数据上进行了仿真实验,结果表明所提方法与局部线性判别分析等若干种非线性分析方法相比,具有更好的非线性处理能力,可以获得更高的异常状态识别准确率。 展开更多
关键词 特征提取 状态监测 流形学习 局部线性判别分析 田纳西—伊斯曼过程
下载PDF
LLE与核Fisher判别分析结合的人脸识别研究 被引量:1
15
作者 万源 周达丽 童恒庆 《武汉理工大学学报(信息与管理工程版)》 CAS 2013年第6期799-803,824,共6页
针对人脸识别问题提出了将LLE与核Fisher相结合的识别方法 LLEKF,先应用LLE方法将样本和待测试的人脸图像集降低到一定维数,再利用核Fisher判别法通过选择合适的核函数,确定最优参数,对降维后的样本图像进行训练,并对降维后的人脸图像... 针对人脸识别问题提出了将LLE与核Fisher相结合的识别方法 LLEKF,先应用LLE方法将样本和待测试的人脸图像集降低到一定维数,再利用核Fisher判别法通过选择合适的核函数,确定最优参数,对降维后的样本图像进行训练,并对降维后的人脸图像进行分类。实验证明,利用LLE低维嵌入后的数据能够更好地保持原人脸数据的非线性特征,并降低特征提取的时间,再经过核Fisher进行分类,明显提高了分类的效率。 展开更多
关键词 人脸识别 局部线性嵌入 核FISHER判别分析 流形学习
下载PDF
改进的Fisher判别分析与折痕检测
16
作者 岳洪伟 王克强 +1 位作者 廖伟 郑永敏 《科学技术与工程》 北大核心 2015年第14期82-85,共4页
针对毛杆折痕难以检测问题,首先将羽毛杆图像转化为一维信号,通过随机共振降低光照不均干扰,结合模极大值理论进行信号奇异点检测;利用奇异点位置完成子图像提取以减少对羽毛杆遍历检测带来的误判。然后采用协方差矩阵对目标子图像进行... 针对毛杆折痕难以检测问题,首先将羽毛杆图像转化为一维信号,通过随机共振降低光照不均干扰,结合模极大值理论进行信号奇异点检测;利用奇异点位置完成子图像提取以减少对羽毛杆遍历检测带来的误判。然后采用协方差矩阵对目标子图像进行特征结构描述,引入仿射不变度量使得该空间满足黎曼流形的要求,并以此调整了Fisher判别分析的类间散度和类内散度计算。最后利用黎曼指数映射得到了样本的最佳映射空间,从而实现非线性空间的类别判别。实验结果验证了所提方法的有效性。 展开更多
关键词 羽毛杆折痕 协方差矩阵 黎曼流形 FISHER判别分析
下载PDF
基于正交线性判别分析的植物分类方法
17
作者 张善文 贾庆节 井荣枝 《安徽农业科学》 CAS 2012年第1期9-10,16,共3页
首先计算数据的类内和类间散度矩阵,得到差形式的目标函数;然后进行特征值分解,得到映射矩阵;最后利用实际植物叶片数据集进行植物分类试验。结果表明,该算法对植物分类是有效可行的。
关键词 流形学习 线性判别分析 正交线性判别分析 植物分类
下载PDF
自适应三维形变模型结合流形分析的人脸识别方法 被引量:2
18
作者 王渐韬 赵丽 齐兴斌 《计算机科学》 CSCD 北大核心 2017年第S1期232-235,239,共5页
为了在人脸姿态和表情归一化后减少人脸外观的信息损失,提出自适应三维形变模型(3DMM)结合流形分析的人脸识别方法。首先,描述人脸姿态变换引起的2D和3D坐标的不对应性,提出自适应3DMM拟合方法;然后,通过三维变换来保留尽可能多的身份信... 为了在人脸姿态和表情归一化后减少人脸外观的信息损失,提出自适应三维形变模型(3DMM)结合流形分析的人脸识别方法。首先,描述人脸姿态变换引起的2D和3D坐标的不对应性,提出自适应3DMM拟合方法;然后,通过三维变换来保留尽可能多的身份信息,将整个图像网格化映射成3D对象,姿态和表情的归一化保证了变换的稳定;最后,利用多流形判别分析计算流形与流形之间的距离,并利用最近邻分类器完成识别。在Multi-PIE,LFW以及自己采集的数据库上的实验验证了所提方法的有效性,在3个数据库上的识别率分别高达99.8%,95.25%,98.62%。所提方法显著改善了人脸识别性能,在约束和无约束环境下均优于其他几种较新的识别方法。 展开更多
关键词 人脸识别 自适应 三维形变模型 多流形判别分析 不可见区域 最近邻分类器
下载PDF
基于加权判别局部多线性嵌入的人脸识别 被引量:12
19
作者 刘昶 周激流 +1 位作者 郎方年 高朝邦 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第10期2248-2255,共8页
张量算法克服了传统向量算法的维数灾难和小样本问题,在人脸识别中取得了较好的效果。尽管如此,现有张量算法容易导致邻近类别在低维空间中重叠,为此,提出了一种加权判别局部多线性嵌入算法。该算法设计了一种自适应加权的判别准则,结... 张量算法克服了传统向量算法的维数灾难和小样本问题,在人脸识别中取得了较好的效果。尽管如此,现有张量算法容易导致邻近类别在低维空间中重叠,为此,提出了一种加权判别局部多线性嵌入算法。该算法设计了一种自适应加权的判别准则,结合类别信息,保持了同类人脸图像之间的局部流形结构,同时利用高斯基函数作为加权函数,根据人脸图像对其他类别的影响,自适应产生权重系数,加大了类间样本的区分度。此外,该算法采用张量形式表示图像数据,保留了图像的结构,继承了张量算法的优点,并且有效地解决了out-of-sample问题。人脸识别实验表明,对于光照,姿态和表情的变化,该算法具有较好的稳健性和较高的识别率。 展开更多
关键词 流形学习 判别分析 张量表示 高斯基函数 人脸识别
下载PDF
基于改进核主成分分析的故障检测与诊断方法 被引量:25
20
作者 韩敏 张占奎 《化工学报》 EI CAS CSCD 北大核心 2015年第6期2139-2149,共11页
针对传统基于核主成分分析的故障检测方法提取非线性特征时只考虑全局结构而忽略局部近邻结构保持的问题,提出基于改进核主成分分析的故障检测与诊断方法。改进核主成分分析方法将流形学习保持局部结构的思想融入核主成分分析的目标函数... 针对传统基于核主成分分析的故障检测方法提取非线性特征时只考虑全局结构而忽略局部近邻结构保持的问题,提出基于改进核主成分分析的故障检测与诊断方法。改进核主成分分析方法将流形学习保持局部结构的思想融入核主成分分析的目标函数中,使得到的特征空间不仅具有原始样本空间的整体结构,还保持样本空间相似的局部近邻结构,可以包含更丰富的特征信息。在此基础上,本文使用改进核主成分分析方法把原始变量空间映射到特征空间,使用费舍尔判别分析在特征空间中构建距离统计量并通过核密度估计确定其控制限,进一步利用相似度的性能诊断方法识别发生的故障类型。采用Tennessee Eastman过程故障检测数据集进行的仿真实验表明所提方法可以取得较好的效果。 展开更多
关键词 改进核主成分分析 流形学习 费舍尔判别分析 故障检测 诊断 仿真实验
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部