High-quality and high-resolution precipitation data are the basis for mesoscale numerical weather forecasting,model verification,and hydrological monitoring,which play an important role in meteorological and hydrologi...High-quality and high-resolution precipitation data are the basis for mesoscale numerical weather forecasting,model verification,and hydrological monitoring,which play an important role in meteorological and hydrological disaster prevention and mitigation.In this study,high-density rain gauge data are used to evaluate the fusion accuracy of the China Meteorological Administration Multisource Precipitation Analysis System(CMPAS),and four CMPAS products with different spatial and temporal resolution and different data sources are compared,to derive the applicability of CMPAS.Results show that all the CMPAS products show high accuracy in the Sichuan Basin,followed by Panxi Area and the western Sichuan Plateau.The errors of the four products all rise with the increase in precipitation.CMPAS overestimates precipitation in summer and autumn and underestimates it in spring and winter.Overall,the applicability of these fused data in the Sichuan Basin is quite good.Due to the lack of observations and the influence of the terrain and meteorological conditions,the evaluation of CMPAS in the plateau area needs further analysis.展开更多
Hilly or mountainous terrain occupies around 12% of the area of Bangladesh.Natural resources associated with Bangladesh's hill are forest resources,biodiversity,minerals,and agricultural crops.Natural resources ha...Hilly or mountainous terrain occupies around 12% of the area of Bangladesh.Natural resources associated with Bangladesh's hill are forest resources,biodiversity,minerals,and agricultural crops.Natural resources have been exploited in the recent four decades due to excessive clearing of hill forest cover,resulting in loss of species richness, impacts related to increased water flow variability, increased hill slope erosion and flooding intensity, and a gradual decrease in the extent of hill area in Bangladesh.This review explores the major causes and effects of depletion of natural resources by linking drivers,pressures and the related impacts.A review has been conducted to structure the effects on the hilly areas and describe the responses to minimize them in the associated DPSIR framework.Population growth has been identified as a major driver contributing to high deforestation rates.This may negatively effect agricultural productivity and increase the frequency of serious flooding.Slash and burn cultivation also impacts the regeneration of evergreen forests,which may accelerate soil erosion. Due to this and other factors,local people are facing a deficits of natural resources(food,fodder,fuel wood and water),which exacerbates the effects of poverty. Future research should try to facilitate decision making for sustainable utilization of natural resources management in the hilly areas of Bangladesh. Additional conservation measures should be developed to increase the resilience of ecosystems at national and regional levels.展开更多
In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Prec...In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Precipitation(CHNIP).During the year 2005 and 2006, monthly precipitation samples have been collected and analyzed for the composition of δD and δ18O.The established local meteoric water line δD=7.42δ18O+1.38, based on the 95 obtained monthly composite samples, could be treated as isotopic input function across the region.The deviations of slope and intercept from the Global Meteoric Water Line indicated the specific regional meteorological conditions.The monthly δ18O values were characterized by a positive correlation with surface air temperature(δ18O(‰) =0.33 T(℃)-13.12).The amount effect visualized during summer period(δ18O(‰) =-0.04P(mm)-3.44) though not appeared at a whole yearly-scale.Spatial distributions of δ18O have properly portrayed the atmospheric circulation background in each month over Arid Northwestern China.The quan-titative simulation of δ18O, which involved a Rayleigh fractionation and a kinetic fractionation, demonstrated that the latter one was the dominating function of condensation of raindrops.Furthermore, the raindrop suffered a re-evaporation during falling processes, and the precipitation vapor might have been mixed with a quantity of local recycled water vapor.Multiple linear regression equations and a δ18O-T relation have been gained by using meteorological parameters and δ18O data to evaluate physical controls on the long-term data.The established δ18O-T relation, which has been based on the present-day precipitation, could be considered as a first step of quantitatively reconstructing the historical environmental climate.展开更多
The environmental quality status of Daya Bay (22.56-22.77°N, 114.51-114.73°E), a main aquaculture area in Guangdong of China, was investigated using 16 polycyclic aromatic hydrocarbon (PAH) sediment samp...The environmental quality status of Daya Bay (22.56-22.77°N, 114.51-114.73°E), a main aquaculture area in Guangdong of China, was investigated using 16 polycyclic aromatic hydrocarbon (PAH) sediment samples of the bay. The total concentrations of 16 PAHs varied from 115 to 1 134 ng/g dry weight. The PAH composition pattern in sediments suggest dominance of 4-ring PAHs in Sites 2 and 4, and the ratio of certain related PAHs indicated important pyrolytic and petrogemc sources. The results enhance the understanding of current contamination levels and make a better assessment of likely impacts of organic contamination on ecosystems and the sustainability of local aquaculture in the area especially after the establishment of the Nuclear Power Station by the bay.展开更多
The change trends of air temperature,precipitation and evaporation from 1999 to 2008 shows that the climate in the Qinghai-Tibet Plateau permafrost region had become warmer.The analysis of the systematic active-layer ...The change trends of air temperature,precipitation and evaporation from 1999 to 2008 shows that the climate in the Qinghai-Tibet Plateau permafrost region had become warmer.The analysis of the systematic active-layer data monitoring network along the Qinghai-Tibet Highway indicated that the active-layer thickness had been increasing and the soil temperature was rising.The soil temperature was rising in winter but not at the end of spring or during the entire summer.With thickening and warming of the active layer,the liquid water content of the active layer had an obvious downward migration and liquid water content in the top horizons decreased,but in the deeper horizons it increased.展开更多
Due to randomness of wind generator's availability, power system planners have big concern on EEG (expected energy generation) and system reliability of power system with wind generators. This paper presents a meth...Due to randomness of wind generator's availability, power system planners have big concern on EEG (expected energy generation) and system reliability of power system with wind generators. This paper presents a methodology to evaluate the EEG as well as overall LOLP (loss of load probability), which is an index for system reliability of multi-area interconnected systems with wind generators, as well as conventional fossil fuel based generating units. The proposed model is also capable of tracking the energy export incorporating the multi-state probability model for wind generator which output varies with time and season.展开更多
Active layer thickness(ALT) is critical to the understanding of the surface energy balance, hydrological cycles, plant growth, and cold region engineering projects in permafrost regions. The temperature at the botto...Active layer thickness(ALT) is critical to the understanding of the surface energy balance, hydrological cycles, plant growth, and cold region engineering projects in permafrost regions. The temperature at the bottom of the active layer, a boundary layer between the equilibrium thermal state(in permafrost below) and transient thermal state(in the atmosphere and surface canopies above), is an important parameter to reflect the existence and thermal stability of permafrost. In this study, the Geophysical Institute Permafrost Model(GIPL) was used to model the spatial distribution of and changes in ALT and soil temperature in the Source Area of the Yellow River(SAYR), where continuous, discontinuous, and sporadic permafrost coexists with seasonally frozen ground. Monthly air temperatures downscaled from the CRU TS3.0 datasets, monthly snow depth derived from the passive microwave remote-sensing data SMMR and SSM/I, and vegetation patterns and soil properties at scale of 1:1000000 were used as input data after modified with GIS techniques. The model validation was carried out carefully with in-situ ALT in the SAYR interpolated from the field-measured soil temperature data. The results of the model indicate that the average ALT in the SAYR has significantly increased from 1.8 m in 1980 to 2.4 m in 2006 at an average rate of 2.2 cm yr–1. The mean annual temperature at the bottom of the active layer, or temperature at the top of permafrost(TTOP) rose substantially from –1.1°C in 1980 to –0.6°C in 2006 at an average rate of 0.018°C yr–1. The increasing rate of the ALT and TTOP has accelerated since 2000. Regional warming and degradation of permafrost has also occurred, and the changes in the areal extent of regions with a sub-zero TTOP shrank from 2.4×104 to 2.2×104 km2 at an average rate of 74 km2 yr–1. Changes of ALT and temperature have adversely affected the environmental stability in the SAYR.展开更多
Carbon emissions caused by human activities are closely related to the process of urbanization,and urban land utilization,function vitality and traffic systems are three important factors that may influence the emissi...Carbon emissions caused by human activities are closely related to the process of urbanization,and urban land utilization,function vitality and traffic systems are three important factors that may influence the emission levels.For clarifying the space structure of a low-carbon eco-city,and combining the concept of"Combining Assessment with Construction"to track and contrast the construction of the low-carbon eco-city,this research selects quantifiable low-carbon eco-city spatial characteristics as indicators,and evaluates and analyzes the potential carbon emissions.Taking the Jinan Western New District as an example,diversity of construction land,travel carbon emission potential,and density and accessibility of adjacent road networks in the overall urban planning were measured.After the completion of the new urban area,the evaluation mainly reflected certain factors,such as the mixed degree of urban functions,the density of urban functions,the walking distance to bus stops and the density and number of bus stops.Dividing the levels and adding equal weights after index normalization,the carbon emission potential is evaluated at the two levels of the overall and fragmented areas.The results show that:(1)The low-carbon emission potential areas in the planning scheme basically reached the planned goals.(2)There is inconsistency between districts and indicators in the planning scheme.The diversity of construction land and the accessibility of the adjacent road network are relatively small;however,there is a large difference between the travel carbon emission potential and the road network accessibility.(3)Carbon emission potential after completion did not reach the planned expectation,and the low-carbon emission potential plots were concentrated in the Changqing Old City Area and Central Area of Dangjia Town Area.(4)The carbon emission indicators varied greatly in different areas,and there were serious imbalances in the density of public transportation lines and the mixed degree of urban functions.展开更多
Bulk density(BD) is an important soil physical property and has significant effect on soil water conservation function. Indirect methods, which are called pedotransfer functions(PTFs), have replaced direct measurement...Bulk density(BD) is an important soil physical property and has significant effect on soil water conservation function. Indirect methods, which are called pedotransfer functions(PTFs), have replaced direct measurement and can acquire the missing data of BD during routine soil surveys. In this study, multiple linear regression(MLR) and artificial neuron network(ANN) methods were used to develop PTFs for predicting BD from soil organic carbon(OC), texture and depth in the Three-River Headwater region of Qinghai Province, China. The performances of the developed PTFs were compared with 14 published PTFs using four indexes, the mean error(ME), standard deviation error(SDE), root mean squared error(RMSE) and coefficient of determination(R^2). Results showed that the performances of published PTFs developed using exponential regression were better than those developed using linear regression from OC. Alexander(1980)-B, Alexander(1980)-A and Manrique and Jones(1991)-B PTFs, which had good predictions, could be applied for the soils in the study area. The PTFs developed using MLR(MLR-PTFs) and ANN(ANN-PTFs) had better soil BD predictions than most of published PTFs. The ANN-PTFs had better performances than the MLR-PTFs and their performances could be improved when soil texture and depth were added as predictor variables. The idea of developing PTFs for predicting soil BD in the study area could provide reference for other areas and the results could lay foundation for the estimation of soil water retention and carbon pool.展开更多
In cellular networks, users communicate with each other through their respective base stations(BSs).Conventionally, users are assumed to be in different cells. BSs serve as decode-and-forward(DF) relay nodes to us...In cellular networks, users communicate with each other through their respective base stations(BSs).Conventionally, users are assumed to be in different cells. BSs serve as decode-and-forward(DF) relay nodes to users.In addition to this type of conventional user, we recognize that there are scenarios users who want to communicate with each other are located in the same cell. This gives rise to the scenario of intra-cell communication. In this case, a BS can behave as a two-way relay to achieve information exchange instead of using conventional DF relay.We consider a multi-cell orthogonal frequency division multiple access(OFDMA) network that comprises these two types of users. We are interested in resource allocation between them. Specifically, we jointly optimize subcarrier assignment, subcarrier pairing, and power allocation to maximize the weighted sum rate. We consider the resource allocation problem at BSs when the end users' power is fixed. We solve the problem approximately through Lagrange dual decomposition. Simulation results show that the proposed schemes outperform other existing schemes.展开更多
基金supported by the Sichuan Meteorological Bureau,the Sichuan Meteorological Observation and Data Centerthe Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province[grant number SCQXKJQN202121]+1 种基金the Key Technology Development Project of Weather Forecasting[grant number YBGJXM(2020)1A-08]the Innovative Development Project of the China Meteorological Administration[grant number CXFZ2021Z007]。
文摘High-quality and high-resolution precipitation data are the basis for mesoscale numerical weather forecasting,model verification,and hydrological monitoring,which play an important role in meteorological and hydrological disaster prevention and mitigation.In this study,high-density rain gauge data are used to evaluate the fusion accuracy of the China Meteorological Administration Multisource Precipitation Analysis System(CMPAS),and four CMPAS products with different spatial and temporal resolution and different data sources are compared,to derive the applicability of CMPAS.Results show that all the CMPAS products show high accuracy in the Sichuan Basin,followed by Panxi Area and the western Sichuan Plateau.The errors of the four products all rise with the increase in precipitation.CMPAS overestimates precipitation in summer and autumn and underestimates it in spring and winter.Overall,the applicability of these fused data in the Sichuan Basin is quite good.Due to the lack of observations and the influence of the terrain and meteorological conditions,the evaluation of CMPAS in the plateau area needs further analysis.
文摘Hilly or mountainous terrain occupies around 12% of the area of Bangladesh.Natural resources associated with Bangladesh's hill are forest resources,biodiversity,minerals,and agricultural crops.Natural resources have been exploited in the recent four decades due to excessive clearing of hill forest cover,resulting in loss of species richness, impacts related to increased water flow variability, increased hill slope erosion and flooding intensity, and a gradual decrease in the extent of hill area in Bangladesh.This review explores the major causes and effects of depletion of natural resources by linking drivers,pressures and the related impacts.A review has been conducted to structure the effects on the hilly areas and describe the responses to minimize them in the associated DPSIR framework.Population growth has been identified as a major driver contributing to high deforestation rates.This may negatively effect agricultural productivity and increase the frequency of serious flooding.Slash and burn cultivation also impacts the regeneration of evergreen forests,which may accelerate soil erosion. Due to this and other factors,local people are facing a deficits of natural resources(food,fodder,fuel wood and water),which exacerbates the effects of poverty. Future research should try to facilitate decision making for sustainable utilization of natural resources management in the hilly areas of Bangladesh. Additional conservation measures should be developed to increase the resilience of ecosystems at national and regional levels.
基金National Natural Science Foundation of China,No.40830636 No.40671034Foundation of Isotopes in Precipitation of Chinese Ecosystem Research Network
文摘In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Precipitation(CHNIP).During the year 2005 and 2006, monthly precipitation samples have been collected and analyzed for the composition of δD and δ18O.The established local meteoric water line δD=7.42δ18O+1.38, based on the 95 obtained monthly composite samples, could be treated as isotopic input function across the region.The deviations of slope and intercept from the Global Meteoric Water Line indicated the specific regional meteorological conditions.The monthly δ18O values were characterized by a positive correlation with surface air temperature(δ18O(‰) =0.33 T(℃)-13.12).The amount effect visualized during summer period(δ18O(‰) =-0.04P(mm)-3.44) though not appeared at a whole yearly-scale.Spatial distributions of δ18O have properly portrayed the atmospheric circulation background in each month over Arid Northwestern China.The quan-titative simulation of δ18O, which involved a Rayleigh fractionation and a kinetic fractionation, demonstrated that the latter one was the dominating function of condensation of raindrops.Furthermore, the raindrop suffered a re-evaporation during falling processes, and the precipitation vapor might have been mixed with a quantity of local recycled water vapor.Multiple linear regression equations and a δ18O-T relation have been gained by using meteorological parameters and δ18O data to evaluate physical controls on the long-term data.The established δ18O-T relation, which has been based on the present-day precipitation, could be considered as a first step of quantitatively reconstructing the historical environmental climate.
基金Supported by China Postdoctoral Science Foundation (No. 2005037621)the National Science Foundation of China (No. 40206015)Fork Ying Tong Education Foundation (No.94002), and the International (CBI) through Fellowship to J. L. Zhou
文摘The environmental quality status of Daya Bay (22.56-22.77°N, 114.51-114.73°E), a main aquaculture area in Guangdong of China, was investigated using 16 polycyclic aromatic hydrocarbon (PAH) sediment samples of the bay. The total concentrations of 16 PAHs varied from 115 to 1 134 ng/g dry weight. The PAH composition pattern in sediments suggest dominance of 4-ring PAHs in Sites 2 and 4, and the ratio of certain related PAHs indicated important pyrolytic and petrogemc sources. The results enhance the understanding of current contamination levels and make a better assessment of likely impacts of organic contamination on ecosystems and the sustainability of local aquaculture in the area especially after the establishment of the Nuclear Power Station by the bay.
基金supported by a grant from the National Program on Key Basic Research Project(973 Program,Grant No. 2010CB951404)the Chinese National Science Foundation (Grant Nos.40830533,40901042 and 40701029)the State Key Laboratory of Frozen Soil Engineering (Grant No. SKLFSE200805)
文摘The change trends of air temperature,precipitation and evaporation from 1999 to 2008 shows that the climate in the Qinghai-Tibet Plateau permafrost region had become warmer.The analysis of the systematic active-layer data monitoring network along the Qinghai-Tibet Highway indicated that the active-layer thickness had been increasing and the soil temperature was rising.The soil temperature was rising in winter but not at the end of spring or during the entire summer.With thickening and warming of the active layer,the liquid water content of the active layer had an obvious downward migration and liquid water content in the top horizons decreased,but in the deeper horizons it increased.
文摘Due to randomness of wind generator's availability, power system planners have big concern on EEG (expected energy generation) and system reliability of power system with wind generators. This paper presents a methodology to evaluate the EEG as well as overall LOLP (loss of load probability), which is an index for system reliability of multi-area interconnected systems with wind generators, as well as conventional fossil fuel based generating units. The proposed model is also capable of tracking the energy export incorporating the multi-state probability model for wind generator which output varies with time and season.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41301068, 41121061)the State Key Laboratory of Frozen Soils Engineering (Grant No. Y252J41001,)the Foundation for Excellent Youth Scholars of CAREERI, CAS (Grant No. 51Y351051)
文摘Active layer thickness(ALT) is critical to the understanding of the surface energy balance, hydrological cycles, plant growth, and cold region engineering projects in permafrost regions. The temperature at the bottom of the active layer, a boundary layer between the equilibrium thermal state(in permafrost below) and transient thermal state(in the atmosphere and surface canopies above), is an important parameter to reflect the existence and thermal stability of permafrost. In this study, the Geophysical Institute Permafrost Model(GIPL) was used to model the spatial distribution of and changes in ALT and soil temperature in the Source Area of the Yellow River(SAYR), where continuous, discontinuous, and sporadic permafrost coexists with seasonally frozen ground. Monthly air temperatures downscaled from the CRU TS3.0 datasets, monthly snow depth derived from the passive microwave remote-sensing data SMMR and SSM/I, and vegetation patterns and soil properties at scale of 1:1000000 were used as input data after modified with GIS techniques. The model validation was carried out carefully with in-situ ALT in the SAYR interpolated from the field-measured soil temperature data. The results of the model indicate that the average ALT in the SAYR has significantly increased from 1.8 m in 1980 to 2.4 m in 2006 at an average rate of 2.2 cm yr–1. The mean annual temperature at the bottom of the active layer, or temperature at the top of permafrost(TTOP) rose substantially from –1.1°C in 1980 to –0.6°C in 2006 at an average rate of 0.018°C yr–1. The increasing rate of the ALT and TTOP has accelerated since 2000. Regional warming and degradation of permafrost has also occurred, and the changes in the areal extent of regions with a sub-zero TTOP shrank from 2.4×104 to 2.2×104 km2 at an average rate of 74 km2 yr–1. Changes of ALT and temperature have adversely affected the environmental stability in the SAYR.
基金The National Key Research and Development Program of China(2019YFD1100803)。
文摘Carbon emissions caused by human activities are closely related to the process of urbanization,and urban land utilization,function vitality and traffic systems are three important factors that may influence the emission levels.For clarifying the space structure of a low-carbon eco-city,and combining the concept of"Combining Assessment with Construction"to track and contrast the construction of the low-carbon eco-city,this research selects quantifiable low-carbon eco-city spatial characteristics as indicators,and evaluates and analyzes the potential carbon emissions.Taking the Jinan Western New District as an example,diversity of construction land,travel carbon emission potential,and density and accessibility of adjacent road networks in the overall urban planning were measured.After the completion of the new urban area,the evaluation mainly reflected certain factors,such as the mixed degree of urban functions,the density of urban functions,the walking distance to bus stops and the density and number of bus stops.Dividing the levels and adding equal weights after index normalization,the carbon emission potential is evaluated at the two levels of the overall and fragmented areas.The results show that:(1)The low-carbon emission potential areas in the planning scheme basically reached the planned goals.(2)There is inconsistency between districts and indicators in the planning scheme.The diversity of construction land and the accessibility of the adjacent road network are relatively small;however,there is a large difference between the travel carbon emission potential and the road network accessibility.(3)Carbon emission potential after completion did not reach the planned expectation,and the low-carbon emission potential plots were concentrated in the Changqing Old City Area and Central Area of Dangjia Town Area.(4)The carbon emission indicators varied greatly in different areas,and there were serious imbalances in the density of public transportation lines and the mixed degree of urban functions.
基金supported by the National Key Technology R&D Program of China(No.2009BAC61B01)the National Basic Research Program(973Program) of China(No.2012CB95570002)the Innovative Team(Investigation and Management for Agricultural Land Resource) of Predominant Science and Technology in Chinese Academy of Agricultural Engineering
文摘Bulk density(BD) is an important soil physical property and has significant effect on soil water conservation function. Indirect methods, which are called pedotransfer functions(PTFs), have replaced direct measurement and can acquire the missing data of BD during routine soil surveys. In this study, multiple linear regression(MLR) and artificial neuron network(ANN) methods were used to develop PTFs for predicting BD from soil organic carbon(OC), texture and depth in the Three-River Headwater region of Qinghai Province, China. The performances of the developed PTFs were compared with 14 published PTFs using four indexes, the mean error(ME), standard deviation error(SDE), root mean squared error(RMSE) and coefficient of determination(R^2). Results showed that the performances of published PTFs developed using exponential regression were better than those developed using linear regression from OC. Alexander(1980)-B, Alexander(1980)-A and Manrique and Jones(1991)-B PTFs, which had good predictions, could be applied for the soils in the study area. The PTFs developed using MLR(MLR-PTFs) and ANN(ANN-PTFs) had better soil BD predictions than most of published PTFs. The ANN-PTFs had better performances than the MLR-PTFs and their performances could be improved when soil texture and depth were added as predictor variables. The idea of developing PTFs for predicting soil BD in the study area could provide reference for other areas and the results could lay foundation for the estimation of soil water retention and carbon pool.
基金Project supported by the Natural Science Foundation of Shandong Province,China(No.ZR2012AQ015)
文摘In cellular networks, users communicate with each other through their respective base stations(BSs).Conventionally, users are assumed to be in different cells. BSs serve as decode-and-forward(DF) relay nodes to users.In addition to this type of conventional user, we recognize that there are scenarios users who want to communicate with each other are located in the same cell. This gives rise to the scenario of intra-cell communication. In this case, a BS can behave as a two-way relay to achieve information exchange instead of using conventional DF relay.We consider a multi-cell orthogonal frequency division multiple access(OFDMA) network that comprises these two types of users. We are interested in resource allocation between them. Specifically, we jointly optimize subcarrier assignment, subcarrier pairing, and power allocation to maximize the weighted sum rate. We consider the resource allocation problem at BSs when the end users' power is fixed. We solve the problem approximately through Lagrange dual decomposition. Simulation results show that the proposed schemes outperform other existing schemes.