采用机械化学法制备了 Ni/TiO2纳米复合材料,并对制备态样品在100和200℃退火30 min.样品均由六角形结构的金红石 TiO2和面心立方结构的Ni组成.随着退火温度的增加,Ni 和 TiO2的晶粒尺寸都有所增加,与此同时内应力释放使矫顽力减少.退火...采用机械化学法制备了 Ni/TiO2纳米复合材料,并对制备态样品在100和200℃退火30 min.样品均由六角形结构的金红石 TiO2和面心立方结构的Ni组成.随着退火温度的增加,Ni 和 TiO2的晶粒尺寸都有所增加,与此同时内应力释放使矫顽力减少.退火使TiO2的本征发光峰、自由激子、束缚激子和氧缺陷引起的发光峰都发生蓝移,这被归结为能带结构的畸变.100℃退火样品呈现多重非线性介电共振和强烈的自然共振现象,当样品厚度为1.9 mm 时,在17.5 GHz 处最佳反射损耗(RL)值为-29.6 dB,且在此厚度下,超过-10 dB 的频宽几乎覆盖了 Ku 波段(12.4-18 GHz);另外,厚度在8-10 mm 范围内,超过-10 dB 的频宽几乎覆盖了整个 X 波段(8-12 GHz).该体系优异的电磁波吸收性能来自于样品中的多重非线性介电共振、自然共振和良好的电磁匹配.展开更多
文摘采用机械化学法制备了 Ni/TiO2纳米复合材料,并对制备态样品在100和200℃退火30 min.样品均由六角形结构的金红石 TiO2和面心立方结构的Ni组成.随着退火温度的增加,Ni 和 TiO2的晶粒尺寸都有所增加,与此同时内应力释放使矫顽力减少.退火使TiO2的本征发光峰、自由激子、束缚激子和氧缺陷引起的发光峰都发生蓝移,这被归结为能带结构的畸变.100℃退火样品呈现多重非线性介电共振和强烈的自然共振现象,当样品厚度为1.9 mm 时,在17.5 GHz 处最佳反射损耗(RL)值为-29.6 dB,且在此厚度下,超过-10 dB 的频宽几乎覆盖了 Ku 波段(12.4-18 GHz);另外,厚度在8-10 mm 范围内,超过-10 dB 的频宽几乎覆盖了整个 X 波段(8-12 GHz).该体系优异的电磁波吸收性能来自于样品中的多重非线性介电共振、自然共振和良好的电磁匹配.