Presence of different terms with various values can alter the thermal behavior of the nanofluids flow over porous surfaces.The aim of this research is to study the influence of nanoparticles volume fraction,nanopartic...Presence of different terms with various values can alter the thermal behavior of the nanofluids flow over porous surfaces.The aim of this research is to study the influence of nanoparticles volume fraction,nanoparticles type,suction or injection,the heat generation or absorption,the Eckert number,thermal and velocity slip parameters,and radiation on the velocity and temperature fields on the flow and heat transfer over a porous flat plate.Four different types of nanoparticles including metal nanoparticles (Cu),metal oxide nanoparticles (Al2O3) and carbon-based nanomaterials (MWCNTs and SWCNTs) which were dispersed in the water (as based fluid) are studied.The governing equations are converted into the ordinary differential equations using similarity solution and solved numerically by the RKF45 algorithm.The results of the simulations showed a contradiction with the results of other researchers who expressed that using nanoparticles with higher thermal conductivity and volume fraction led to increasing heat transfer rate in nanofluids;this study proves that,in some cases,boosting the volume fraction of nanoparticles has a potential to decrease the heat transfer rate due to significant changes in values of some parameters including radiation,heat generation,and viscous dissipation.展开更多
The aim of present work is to develop a crystal plasticity modeling approach to integrate slip,dynamic recrystallization(DRX)and grain boundary sliding(GBS)for simulating the deformation behavior and texture evolution...The aim of present work is to develop a crystal plasticity modeling approach to integrate slip,dynamic recrystallization(DRX)and grain boundary sliding(GBS)for simulating the deformation behavior and texture evolution of magnesium alloys at high temperatures.Firstly,the deformation mechanisms of an AZ31B Mg alloy sheet at 300°C were investigated by examining texture and microstructure evolution during uniaxial tension and compression tests.DRX refines microstructure at strains less than 0.2,and subsequently GBS plays a significant role during deformation process.A GBS model is developed to evaluate strain and grain rotation induced by GBS,and implemented into the polycrystal plasticity framework VPSC.The VPSC-DRX-GBS model can well reproduce the stress−strain curves,grain size,texture evolution and significant texture differences in tension and compression tests due to GBS.The calculated GBS contribution ratio in tension is obviously higher than that in compression due to easier cavity nucleation at grain boundaries under tension loading.展开更多
This study examines theoretically and computationally the non-Newtonian boundary layer flow and heat transfer for a viscoelastic fluid over a stretching continuous sheet embedded in a porous medium with variable fluid...This study examines theoretically and computationally the non-Newtonian boundary layer flow and heat transfer for a viscoelastic fluid over a stretching continuous sheet embedded in a porous medium with variable fluid properties, slip velocity, and internal heat generation/absorption. The flow in boundary layer is considered to be generated solely by the stretching of the sheet adjacent to porous medium with boundary wall slip condition. Highly nonlinear momentum and thermal boundary layer equations governing the flow and heat transfer are reduced to set of nonlinear ordinary differential equations by appropriate transformation. The resulting ODEs are successfully solved numerically with the help of shooting method. Graphical results are shown for non-dimensional velocities and temperature. The effects of heat generation/absorption parameter, the porous parameter, the viscoelastic parameter, velocity slip parameter, variable thermal conductivity and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin-friction coefficient and Nusselt number are presented. Comparison of numerical results is made with the earlier published results under limiting cases.展开更多
To investigate the slide film damping in the micro-scale shear-driven rarefied gas flows, an effective multi-relaxation-time lattice Boltzmann method(MRT-LBM) is proposed. Through the Knudsen boundary layer model, the...To investigate the slide film damping in the micro-scale shear-driven rarefied gas flows, an effective multi-relaxation-time lattice Boltzmann method(MRT-LBM) is proposed. Through the Knudsen boundary layer model, the effects of wall and rarefaction are considered in the correction of relaxation time. The results of gas velocity distributions are compared among the MRT, Monte Carlo model(DSMC) and high-order LBM, and the effects of the tangential momentum accommodation coefficient on the gas velocity distributions are also compared between the MRT and the high-order LBM. It is indicated that the amendatory MRT-LBM can unlock the dilemma of simulation of micro-scale non-equilibrium. Finally, the effects of the Knudsen number, the Stokes number, and the gap between the plates on the damping are researched. The results show that by decreasing the Knudsen number or increasing the Stokes number, the slide film damping increases in the transition regime;however, as the size of the gap increases, the slide film damping decreases substantially.展开更多
A field monitoring program was carried out to record the slope failure process of a landfill with multiple intermediate covering layers.The monitored items include the leachate level,the surface horizontal displacemen...A field monitoring program was carried out to record the slope failure process of a landfill with multiple intermediate covering layers.The monitored items include the leachate level,the surface horizontal displacement and the deep lateral displacement.Based on the monitoring data,analysis was carried out to verify the stability control effects of leachate drainage on the top layer,leachate drainage in different layers,and near-slope leachate drainage.The results show that the maximum slip area is 34 760 m 2 and the average surface horizontal displacement of the 10th platform is 1.77 m.Dumping near the slope is the main reason for the instability.The closer to the dumping area,the greater the degree of slip and the more significantly the leachate level rises.Affected by the intermediate covering layers,the failure mode is the local sliding inside the landfill,and the effect of near-slope leachate drainage on the stability control is obvious.展开更多
A new method based on the multi-wedge translation mechanism is presented to calculate the lateral force acting on the stabilizing piles. At first, there is no assumption for the shape of potential sliding surface, it ...A new method based on the multi-wedge translation mechanism is presented to calculate the lateral force acting on the stabilizing piles. At first, there is no assumption for the shape of potential sliding surface, it is just considered that the potential sliding surface is a composite of a number of straight lines. And then, the potential sliding mass is divided into a number of triangular wedges take with these straight lines as its base. The kinematic theorem of limit analysis is adopted to calculate the rate of external work and the rate of energy dissipation for each triangular wedge, respectively. Furthermore, the multivariate functions are established to calculate the lateral force acting on the stabilizing piles. The lateral force and the corresponding potential sliding surfaces can be obtained by an optimizational technique. At last, an example is taken to illustrate the method. The effect of soil strength parameters, slope angle and pile roughness on the lateral force and the corresponding potential sliding surface are analyzed.The result are compared with those obtained using other methods.展开更多
Good understanding of relationship between parameters of vehicle, terrain and interaction at the interface is required to develop effective navigation and motion control algorithms for autonomous wheeled mobile robots...Good understanding of relationship between parameters of vehicle, terrain and interaction at the interface is required to develop effective navigation and motion control algorithms for autonomous wheeled mobile robots (AWMR) in rough terrain. A model and analysis of relationship among wheel slippage (S), rotation angle (0), sinkage (z) and wheel radius (r) are presented. It is found that wheel rotation angle, sinkage and radius have some influence on wheel slippage. A multi-objective optimization problem with slippage as utility function was formulated and solved in MATLAB. The results reveal the optimal values of wheel-terrain parameters required to achieve optimum slippage on dry sandy terrain. A method of slippage estimation for a five-wheeled mobile robot was presented through comparing the odometric measurements of the powered wheels with those of the fifth non-powered wheel. The experimental result shows that this method is feasible and can be used for online slippage estimation in a sandy terrain.展开更多
文摘Presence of different terms with various values can alter the thermal behavior of the nanofluids flow over porous surfaces.The aim of this research is to study the influence of nanoparticles volume fraction,nanoparticles type,suction or injection,the heat generation or absorption,the Eckert number,thermal and velocity slip parameters,and radiation on the velocity and temperature fields on the flow and heat transfer over a porous flat plate.Four different types of nanoparticles including metal nanoparticles (Cu),metal oxide nanoparticles (Al2O3) and carbon-based nanomaterials (MWCNTs and SWCNTs) which were dispersed in the water (as based fluid) are studied.The governing equations are converted into the ordinary differential equations using similarity solution and solved numerically by the RKF45 algorithm.The results of the simulations showed a contradiction with the results of other researchers who expressed that using nanoparticles with higher thermal conductivity and volume fraction led to increasing heat transfer rate in nanofluids;this study proves that,in some cases,boosting the volume fraction of nanoparticles has a potential to decrease the heat transfer rate due to significant changes in values of some parameters including radiation,heat generation,and viscous dissipation.
基金The authors would like to acknowledge the support from the National Natural Science Foundation of China(51675331 and 51775337)Major Projects of the Ministry of Education(311017)Pei-dong WU would like to acknowledge the support from the Natural Sciences and Engineering Research Council of Canada(NSERC,RGPIN-2016-06464).
文摘The aim of present work is to develop a crystal plasticity modeling approach to integrate slip,dynamic recrystallization(DRX)and grain boundary sliding(GBS)for simulating the deformation behavior and texture evolution of magnesium alloys at high temperatures.Firstly,the deformation mechanisms of an AZ31B Mg alloy sheet at 300°C were investigated by examining texture and microstructure evolution during uniaxial tension and compression tests.DRX refines microstructure at strains less than 0.2,and subsequently GBS plays a significant role during deformation process.A GBS model is developed to evaluate strain and grain rotation induced by GBS,and implemented into the polycrystal plasticity framework VPSC.The VPSC-DRX-GBS model can well reproduce the stress−strain curves,grain size,texture evolution and significant texture differences in tension and compression tests due to GBS.The calculated GBS contribution ratio in tension is obviously higher than that in compression due to easier cavity nucleation at grain boundaries under tension loading.
文摘This study examines theoretically and computationally the non-Newtonian boundary layer flow and heat transfer for a viscoelastic fluid over a stretching continuous sheet embedded in a porous medium with variable fluid properties, slip velocity, and internal heat generation/absorption. The flow in boundary layer is considered to be generated solely by the stretching of the sheet adjacent to porous medium with boundary wall slip condition. Highly nonlinear momentum and thermal boundary layer equations governing the flow and heat transfer are reduced to set of nonlinear ordinary differential equations by appropriate transformation. The resulting ODEs are successfully solved numerically with the help of shooting method. Graphical results are shown for non-dimensional velocities and temperature. The effects of heat generation/absorption parameter, the porous parameter, the viscoelastic parameter, velocity slip parameter, variable thermal conductivity and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin-friction coefficient and Nusselt number are presented. Comparison of numerical results is made with the earlier published results under limiting cases.
基金The National Natural Science Foundation of China(No.51375091)
文摘To investigate the slide film damping in the micro-scale shear-driven rarefied gas flows, an effective multi-relaxation-time lattice Boltzmann method(MRT-LBM) is proposed. Through the Knudsen boundary layer model, the effects of wall and rarefaction are considered in the correction of relaxation time. The results of gas velocity distributions are compared among the MRT, Monte Carlo model(DSMC) and high-order LBM, and the effects of the tangential momentum accommodation coefficient on the gas velocity distributions are also compared between the MRT and the high-order LBM. It is indicated that the amendatory MRT-LBM can unlock the dilemma of simulation of micro-scale non-equilibrium. Finally, the effects of the Knudsen number, the Stokes number, and the gap between the plates on the damping are researched. The results show that by decreasing the Knudsen number or increasing the Stokes number, the slide film damping increases in the transition regime;however, as the size of the gap increases, the slide film damping decreases substantially.
基金The National Basic Research Program of China(973Project)(No.2012CB719800)the National Natural Science Foundation of China(No.41502276)
文摘A field monitoring program was carried out to record the slope failure process of a landfill with multiple intermediate covering layers.The monitored items include the leachate level,the surface horizontal displacement and the deep lateral displacement.Based on the monitoring data,analysis was carried out to verify the stability control effects of leachate drainage on the top layer,leachate drainage in different layers,and near-slope leachate drainage.The results show that the maximum slip area is 34 760 m 2 and the average surface horizontal displacement of the 10th platform is 1.77 m.Dumping near the slope is the main reason for the instability.The closer to the dumping area,the greater the degree of slip and the more significantly the leachate level rises.Affected by the intermediate covering layers,the failure mode is the local sliding inside the landfill,and the effect of near-slope leachate drainage on the stability control is obvious.
基金Projects(SKLGP2012K024,SKLGP2013K012)supported by the Opening Fund of State Key Laboratory of Geohazard Prevention and Ceoenvironment Protection,ChinaProject(2011BAK12B03)supported by the National Technology Project,ChinaProject(41401004)supported by the National Natural Science Foundation of China
文摘A new method based on the multi-wedge translation mechanism is presented to calculate the lateral force acting on the stabilizing piles. At first, there is no assumption for the shape of potential sliding surface, it is just considered that the potential sliding surface is a composite of a number of straight lines. And then, the potential sliding mass is divided into a number of triangular wedges take with these straight lines as its base. The kinematic theorem of limit analysis is adopted to calculate the rate of external work and the rate of energy dissipation for each triangular wedge, respectively. Furthermore, the multivariate functions are established to calculate the lateral force acting on the stabilizing piles. The lateral force and the corresponding potential sliding surfaces can be obtained by an optimizational technique. At last, an example is taken to illustrate the method. The effect of soil strength parameters, slope angle and pile roughness on the lateral force and the corresponding potential sliding surface are analyzed.The result are compared with those obtained using other methods.
基金Project(60775060) supported by the National Natural Science Foundation of ChinaProject(F200801) supported by the Natural Science Foundation of Heilongjiang Province,China+1 种基金Project(200802171053,20102304110006) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(2012RFXXG059) supported by Harbin Science and Technology Innovation Talents Special Fund,China
文摘Good understanding of relationship between parameters of vehicle, terrain and interaction at the interface is required to develop effective navigation and motion control algorithms for autonomous wheeled mobile robots (AWMR) in rough terrain. A model and analysis of relationship among wheel slippage (S), rotation angle (0), sinkage (z) and wheel radius (r) are presented. It is found that wheel rotation angle, sinkage and radius have some influence on wheel slippage. A multi-objective optimization problem with slippage as utility function was formulated and solved in MATLAB. The results reveal the optimal values of wheel-terrain parameters required to achieve optimum slippage on dry sandy terrain. A method of slippage estimation for a five-wheeled mobile robot was presented through comparing the odometric measurements of the powered wheels with those of the fifth non-powered wheel. The experimental result shows that this method is feasible and can be used for online slippage estimation in a sandy terrain.