期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
多点最优最小熵反褶积结合交互信息的过载信号特征提取
1
作者 谢雨岑 房安琪 +4 位作者 郜王鑫 李彩芳 邵志豪 张珂 唐万杰 《探测与控制学报》 CSCD 北大核心 2024年第5期1-7,共7页
针对弹药超高速侵彻多层建筑物的过程中,侵彻过载加速度信号产生粘连混叠,影响侵彻穿层特征的精准辨识提取,造成引信难以精确计层的问题,提出一种基于多点最优最小熵反褶积(MOMEDA)和交互信息的过载信号穿层特征提取方法。考虑到引信加... 针对弹药超高速侵彻多层建筑物的过程中,侵彻过载加速度信号产生粘连混叠,影响侵彻穿层特征的精准辨识提取,造成引信难以精确计层的问题,提出一种基于多点最优最小熵反褶积(MOMEDA)和交互信息的过载信号穿层特征提取方法。考虑到引信加速度敏感系统在高频强动载下的响应规律未知,该方法利用MOMEDA的非迭代盲解卷积增强技术来实现对原始侵彻过载信号的降噪,基于交互信息理论进一步优化MOMEDA最佳滤波器的长度以增强原始侵彻过载信号中多层目标特征。通过对引信超高速侵彻多层靶板的仿真、试验信号的研究结果表明,该方法可以有效突显原始侵彻过载信号中的穿层特征,为强粘连信号下的引信精确计层功能实现提供依据。 展开更多
关键词 超高速侵彻 多点最优最小熵反褶积 交互信息 特征提取
下载PDF
采用改进多点最优最小熵反褶积的齿轮箱复合故障特征提取 被引量:6
2
作者 王靖岳 李建刚 王浩天 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第5期70-77,94,共9页
针对强背景噪声下齿轮箱复合故障中的微弱故障特征难以提取的问题,提出了一种改进多点最优最小熵反褶积的齿轮箱复合故障特征提取方法。将小波降噪作为前置滤波器,克服了多点峭度谱在强背景噪声下难以有效识别信号中的微弱故障周期成分... 针对强背景噪声下齿轮箱复合故障中的微弱故障特征难以提取的问题,提出了一种改进多点最优最小熵反褶积的齿轮箱复合故障特征提取方法。将小波降噪作为前置滤波器,克服了多点峭度谱在强背景噪声下难以有效识别信号中的微弱故障周期成分的缺点,使信号峭度增加了65.9%,突出了微弱故障周期成分;根据多点峭度谱识别出的故障周期成分设置合理的故障区间,利用多点最优最小熵反褶积突出了信号中的故障周期,避免了对信号直接包络解调而出现的漏诊现象;将差分能量算子解调应用于改进算法处理后的信号,与传统的Hilbert解调方法相比,该算法得到的解调谱中故障特征频率的峰值更加明显。通过对仿真信号与齿轮箱中齿轮点蚀磨损复合故障振动信号的研究结果表明,改进多点最优最小熵反褶积方法能够完整地提取信号中的故障特征频率成分,成功率达到了100%;与变分模态分解进行了对比分析,改进算法有效消除了模态混叠现象。仿真和试验结果表明,改进算法可以有效提取强背景噪声下齿轮箱复合故障中的微弱故障特征。 展开更多
关键词 复合故障 小波降噪 多点最优最小熵反褶积 差分能量算子解调
下载PDF
多点最优组合算法在大学生出游网站中的研究与实现 被引量:1
3
作者 唐彬文 卓雨嘉 +1 位作者 陈木芽 陈小青 《聊城大学学报(自然科学版)》 2016年第4期105-110,共6页
在互联网的风口,各色旅游网站和旅游手机软件发展迅速.为顺应互联网的发展,设计和开发了一个大学生出游网站.首先对网站的可行性进行分析,得出可行性结论.其次分析其定位、用户需求、性能需求,进一步得出需求分析结论.接着是旅游线路推... 在互联网的风口,各色旅游网站和旅游手机软件发展迅速.为顺应互联网的发展,设计和开发了一个大学生出游网站.首先对网站的可行性进行分析,得出可行性结论.其次分析其定位、用户需求、性能需求,进一步得出需求分析结论.接着是旅游线路推荐功能的设计与实现,即通过改进Dijkstra算法寻找多点最优路径组合.以此为游客提供合理的游玩线路.最后,通过php以及apache等工具完成网站的开发和测试. 展开更多
关键词 多点最优 迪科斯彻算法 出游网站 超文本预处理器
下载PDF
利用参数自适应多点最优最小熵反褶积的行星轮轴承微弱故障特征提取 被引量:10
4
作者 王朝阁 李宏坤 +2 位作者 胡少梁 胡瑞杰 任学平 《振动工程学报》 EI CSCD 北大核心 2021年第3期633-645,共13页
针对行星轮轴承故障振动信号受复杂传递路径、强背景噪声和齿轮振动干扰的影响,导致故障特征微弱难以提取的问题,提出一种参数自适应的多点最优最小熵反褶积(parameter adaptive multipoint optimal minimum entropy deconvolution adju... 针对行星轮轴承故障振动信号受复杂传递路径、强背景噪声和齿轮振动干扰的影响,导致故障特征微弱难以提取的问题,提出一种参数自适应的多点最优最小熵反褶积(parameter adaptive multipoint optimal minimum entropy deconvolution adjusted,PA-MOMEDA)的行星轮轴承微弱故障诊断方法。为克服MOMEDA依赖人为经验选取主要影响参数的不足,建立多目标优化新指标,通过粒子群算法优良的寻优特性来自动确定最佳的影响参数,使用参数优化的MOMEDA对行星轮轴承故障信号进行最佳解卷积运算。针对MOMEDA解卷积信号存在严重边缘效应的问题,设计一种波形延伸策略对解卷积信号进行自适应补偿,提高了MOMEDA对微弱故障冲击特征的解卷积性能。对提升的解卷积信号进行包络解调处理,即可从其包络谱中提取到明显的故障特征频率。通过行星轮轴承故障仿真和工程实验数据分析表明,相比传统的MOMEDA方法、MCKD方法和快速谱峭度方法,该方法能成功地提取微弱的故障冲击特征且更加明显,提高了行星轮轴承故障诊断的准确性和鲁棒性。 展开更多
关键词 故障诊断 行星齿轮箱 行星轮轴承 特征提取 多点最优最小熵反褶积(MOMEDA)
下载PDF
ITD结合参数优化MOMEDA的滚动轴承故障特征提取
5
作者 刘沛 彭珍瑞 何泽人 《机械科学与技术》 CSCD 北大核心 2024年第6期967-974,共8页
针对固有时间尺度分解(Intrinsic time scale decomposition,ITD)方法在强背景噪声影响下难以提取轴承故障特征的问题,提出了一种ITD与参数优化的多点最优最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOME... 针对固有时间尺度分解(Intrinsic time scale decomposition,ITD)方法在强背景噪声影响下难以提取轴承故障特征的问题,提出了一种ITD与参数优化的多点最优最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)相结合的滚动轴承故障特征提取方法。首先根据包络谱峰值因子最大原则提取包含丰富故障信息的ITD分量,其次对该分量进行MOMEDA降噪处理。对影响MOMEDA滤波效果的两个参数——故障周期T与滤波器长度L分别以多点峭度和平方包络谱的基尼指数进行优化,最后进行包络谱分析提取故障特征频率。通过仿真信号与实测信号分析表明该方法能在强噪声干扰下有效提取故障特征。 展开更多
关键词 固有时间尺度分解 多点最优最小熵解卷积 滚动轴承 包络谱峰值因子 基尼指数
下载PDF
并行RSSD和改进MOMEDA的齿轮箱故障诊断
6
作者 尹志安 孙文龙 王凯 《机械设计与制造》 北大核心 2024年第9期196-204,共9页
为了克服传统共振稀疏信号分解与矩量法的局限性,提高其提取微弱故障特征的能力,提出了一种并行双参数优化RSSD和改进MOMEDA的行星齿轮箱故障诊断方法。首先,并行双参数优化RSSD构造了与不同故障特征相匹配的小波基函数,并将复合故障信... 为了克服传统共振稀疏信号分解与矩量法的局限性,提高其提取微弱故障特征的能力,提出了一种并行双参数优化RSSD和改进MOMEDA的行星齿轮箱故障诊断方法。首先,并行双参数优化RSSD构造了与不同故障特征相匹配的小波基函数,并将复合故障信号自适应分解为不同的谐振分量,实现了复杂故障特征的解耦。其次,利用改进MOMEDA对共振分量进行去卷积滤波,有效地消除了复杂传输路径和强环境噪声的影响,增强了与弱故障相关的脉冲。最后,通过对行星齿轮箱实验平台的实际故障信号的分析,证明了提出的方法不仅具有良好的解耦性能以及提取弱故障信号能力,且能够全面、准确地提取不同类型的故障。 展开更多
关键词 共振稀疏信号分解 多点最优最小熵反褶积 行星齿轮箱 故障诊断
下载PDF
基于ASMVMD和MOMEDA的齿轮特征提取方法
7
作者 唐贵基 曾鹏飞 朱爽 《机电工程》 CAS 北大核心 2024年第12期2174-2184,共11页
针对齿轮信号易被强噪声干扰,导致损伤特征难以提取的问题,提出了一种基于自适应逐次多元变分模态分解(ASMVMD)和多点最优最小熵解卷积(MOMEDA)的齿轮故障特征提取方法。首先,采用加权黑猩猩优化算法对SMVMD分解参数进行了自适应寻优,以... 针对齿轮信号易被强噪声干扰,导致损伤特征难以提取的问题,提出了一种基于自适应逐次多元变分模态分解(ASMVMD)和多点最优最小熵解卷积(MOMEDA)的齿轮故障特征提取方法。首先,采用加权黑猩猩优化算法对SMVMD分解参数进行了自适应寻优,以SMVMD分解后各个通道的所有分量的平均包络谱峰值因子(Ec)之和的相反数作为寻优的适应度函数,确定了最大惩罚因子α和最大分解模态数k的最优值;然后,采用ASMVMD方法对齿轮多通道故障数据进行了自适应分解,根据Ec指标提取了各通道特定分量,并将这些分量相加,进行了信号重构;最后,采用MOMEDA解卷积处理了重构信号,进一步强化了齿轮故障的冲击特性,并利用包络谱分析解卷积信号,提取了齿轮的故障特征频率。研究结果表明:通过仿真信号和模拟实验信号的分析,可知利用ASMVMD-MOMEDA相结合的方法处理得到的信号降噪效果显著,能有效抑制无关干扰成分的影响,从包络谱中可以清晰地看到故障频率的前几阶倍频;与多元经验模态分解(MEMD)-MOMEDA相结合的方法进行对比,发现采用ASMVMD-MOMEDA方法得到的包络谱较MEMD-MOMEDA方法的谱线更加干净,各阶倍频更加明显,进一步证明ASMVMD-MOMEDA方法可以准确提取齿轮故障特征。 展开更多
关键词 齿轮损伤特征 故障特征提取 自适应逐次多元变分模态分解 多点最优最小熵解卷积 多通道 解卷积 包络谱峰值因子 信号重构
下载PDF
应用CEEMD降噪与自适应MOMEDA的轴承故障特征提取方法
8
作者 宋宇博 张宇飞 《中国测试》 CAS 北大核心 2024年第2期180-188,共9页
针对滚动轴承早期故障信号中冲击成分能量低且易被强烈的背景噪声所淹没的问题,该文提出一种基于互补集合经验模态分解(complete ensemble empirical mode decomposition,CEEMD)-小波阈值降噪和参数自适应多点最优最小熵解卷积(multipoi... 针对滚动轴承早期故障信号中冲击成分能量低且易被强烈的背景噪声所淹没的问题,该文提出一种基于互补集合经验模态分解(complete ensemble empirical mode decomposition,CEEMD)-小波阈值降噪和参数自适应多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)的滚动轴承故障特征提取方法。将CEEMD与小波阈值降噪结合对原始信号进行降噪;提出一种新的复合指标:峭度-包络波形因子,并以其为适应度函数设计变步长搜索法,对MOMEDA算法的滤波器长度进行寻优;基于寻优的滤波器长度对降噪的信号进行MOMEDA解卷积,并通过包络谱分析识别滚动轴承的故障特征频率。对比实验结果表明:以该文寻找的最优滤波器长度作为MOMEDA的参数,解卷积后包络谱故障频率更加清晰;且相较于传统的MOMEDA算法和小波阈值降噪-MOMEDA方法,该文提出的方法能够更有效地提取强噪声背景下微弱的故障特征信息。 展开更多
关键词 滚动轴承 故障诊断 多点最优最小熵解卷积 互补集合经验模态分解 小波阈值降噪
下载PDF
基于迭代SGMD与改进MOMEDA的滚动轴承微弱故障诊断
9
作者 王富珂 高丙朋 蔡鑫 《组合机床与自动化加工技术》 北大核心 2024年第12期145-150,157,共7页
针对强背景噪声下滚动轴承故障特征微弱的问题,提出一种基于迭代辛几何模态分解(ISGMD)与改进多点最优最小熵解卷积调整(IMOMEDA)相结合的故障诊断方法。首先,利用ISGMD对故障信号进行分解并基于综合指标选取最优分量;其次,根据多点峭... 针对强背景噪声下滚动轴承故障特征微弱的问题,提出一种基于迭代辛几何模态分解(ISGMD)与改进多点最优最小熵解卷积调整(IMOMEDA)相结合的故障诊断方法。首先,利用ISGMD对故障信号进行分解并基于综合指标选取最优分量;其次,根据多点峭度谱确定MOMEDA的故障周期,利用白鹭群优化算法(ESOA)对滤波器长度进行自适应寻优,通过IMOMEDA对最优分量进行解卷积处理;最后,对解卷积处理后的信号进行包络谱分析,提取故障特征频率完成故障诊断。仿真及实验分析结果表明,所提方法能有效提取强背景噪声下的滚动轴承微弱故障特征信息。 展开更多
关键词 滚动轴承 迭代辛几何模态分解 改进多点最优最小熵解卷积调整 综合指标 白鹭群化算法 故障诊断
下载PDF
基于编码器信号自适应MOMEDA的太阳轮故障检测
10
作者 田田 郭瑜 +2 位作者 樊家伟 徐万通 朱云贵 《振动.测试与诊断》 EI CSCD 北大核心 2024年第6期1173-1180,1249,共9页
针对行星减速器太阳轮故障检测问题,提出了一种基于改进自适应多点最优最小熵反褶积(multipoint optimal minimum entropy deconvolution adjusted,简称MOMEDA)的太阳轮故障检测方法。首先,基于编码器信号传递路径短、与动力学直接相关... 针对行星减速器太阳轮故障检测问题,提出了一种基于改进自适应多点最优最小熵反褶积(multipoint optimal minimum entropy deconvolution adjusted,简称MOMEDA)的太阳轮故障检测方法。首先,基于编码器信号传递路径短、与动力学直接相关的优势,结合传动参数,计算得到故障特征周期,确定故障周期搜索区间及步长;其次,利用谱负熵最大化原则自适应确定优化滤波器长度,并得到解卷积后的信号;最后,采用包络谱分析揭示太阳轮齿根裂纹故障特征。通过仿真和实测数据分析,验证了所提方法的有效性。 展开更多
关键词 多点最优最小熵反褶积 瞬时角速度 谱负熵 太阳轮齿根裂纹 特征提取
下载PDF
强噪声背景下地铁牵引电机轴承故障识别方法研究
11
作者 王锦畅 陈威 +2 位作者 彭乐乐 郑树彬 钟倩文 《计算机与数字工程》 2024年第7期2239-2243,共5页
为了实现地铁车辆牵引电机轴承故障识别,论文针对电机轴承故障冲击被强背景噪声淹没特征提取困难的问题,利用多点最优调整的最小熵解卷积增强故障冲击成分,采用粒子群优化算法自适应地确定滤波器阶数和故障周期,获取高信噪比的故障特征... 为了实现地铁车辆牵引电机轴承故障识别,论文针对电机轴承故障冲击被强背景噪声淹没特征提取困难的问题,利用多点最优调整的最小熵解卷积增强故障冲击成分,采用粒子群优化算法自适应地确定滤波器阶数和故障周期,获取高信噪比的故障特征信号,最后对故障特征信号进行包络谱分析实现故障识别。现场采集数据验证了该方法的有效性。 展开更多
关键词 牵引电机 轴承故障诊断 多点最优调整的最小熵解卷积 粒子群
下载PDF
基于MOMEDA与LMD的往复压缩机活塞杆沉降信号故障特征提取方法研究
12
作者 何明 方燚 +5 位作者 孙瑞亮 李豪 刘世成 范文俊 闫慧敏 舒悦 《流体机械》 CSCD 北大核心 2024年第11期72-78,共7页
针对传统经验模态分解(EMD)等方法在当前往复压缩机活塞杆故障诊断中故障特征提取能力不足的问题,本文通过电涡流传感器获得往复压缩机活塞杆的沉降信号,利用多点最优最小熵解卷积算法(MOMEDA)对信号周期进行自适应调整去干扰处理,再对... 针对传统经验模态分解(EMD)等方法在当前往复压缩机活塞杆故障诊断中故障特征提取能力不足的问题,本文通过电涡流传感器获得往复压缩机活塞杆的沉降信号,利用多点最优最小熵解卷积算法(MOMEDA)对信号周期进行自适应调整去干扰处理,再对其进行局部均值分解(LMD),得到信号所对应的多个乘积函数(PF)分量的特征参数因子,包括偏度系数gi、峭度系数qi和总能量比Ei/E。对比活塞杆正常和故障状态(支撑环磨损、紧固元件松动和早期裂纹)下的特征参数变化,结果显示:在活塞杆支撑环磨损情况下,g1和q3的值将分别达到-0.02和1.60,与正常值相差3~5倍;活塞杆紧固原件松动情况下,g1,g3,q1,q3均会出现大幅度偏差,甚至呈现出超过正常值10倍以上的差距;活塞杆早期裂纹情况下,低阶分量g4和q4会出现一些变化,分别达到-1.30和1.60;MOMEDA与LMD相结合的方法,能够准确、有效地对往复压缩机活塞杆沉降信号进行判断,相比于传统的EMD信号分析方法,该方法在活塞杆故障诊断领域展现出更高的实用性。 展开更多
关键词 多点最优最小熵解卷积算法 局部均值分解 经验模态分解 故障诊断 往复压缩机 活塞杆
下载PDF
基于IEWT-MOMEDA-FSC的滚动轴承故障诊断
13
作者 吴振雄 王林军 +2 位作者 邹腾枭 陈梦华 陈保家 《三峡大学学报(自然科学版)》 北大核心 2024年第1期92-98,共7页
针对滚动轴承故障信号常伴有噪声干扰且故障特征难以提取的问题,本文提出一种基于改进经验小波变换(IEWT)、多点优化最小熵解卷积(MOMEDA)和快速谱相关(FSC)的滚动轴承故障诊断方法.首先,将原始信号进行快速谱相关分析得到增强包络谱,... 针对滚动轴承故障信号常伴有噪声干扰且故障特征难以提取的问题,本文提出一种基于改进经验小波变换(IEWT)、多点优化最小熵解卷积(MOMEDA)和快速谱相关(FSC)的滚动轴承故障诊断方法.首先,将原始信号进行快速谱相关分析得到增强包络谱,通过增强包络谱的极值点来自适应地划分频谱,以分割的频谱为边界构建小波滤波器组将信号分解为多个IMF分量,利用相关峭度准则筛选出有效的分量进行叠加;其次,用MOMEDA对其进行降噪处理,将降噪后的信号进行快速谱相关分析,得到增强包络谱图;最后,将增强包络谱图中幅值较高的频率与故障频率对比,判定其失效形式,用所提出的方法对实测轴承故障信号进行分析验证.结果表明,所提出的方法能有效降低噪音干扰且增强信号故障冲击特性,在噪声环境下具有较强的故障特征提取能力. 展开更多
关键词 改进经验小波变换 多点最优最小熵解卷积 快速谱相关 峭度 互相关
下载PDF
基于SK‑MOMEDA的风电机组轴承复合故障特征分离提取 被引量:7
14
作者 向玲 李京蓄 +1 位作者 胡爱军 李营 《振动.测试与诊断》 EI CSCD 北大核心 2021年第4期644-651,826,共9页
针对在实际工况中风电机组滚动轴承发生复合故障时,多个故障间相互作用,彼此干扰,造成复合故障特征难以分离问题,提出了基于谱峭度(spectral kurtosis,简称SK)与多点最优调整的最小熵解卷积(multipoint optimal minimum entropy deconvo... 针对在实际工况中风电机组滚动轴承发生复合故障时,多个故障间相互作用,彼此干扰,造成复合故障特征难以分离问题,提出了基于谱峭度(spectral kurtosis,简称SK)与多点最优调整的最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,简称MOMEDA)的风电机组滚动轴承复合故障特征分离提取方法。首先,对复合故障信号进行谱峭度分析,选出能量较大的共振频带,并通过构建带通滤波器对相应的共振频带进行滤波,对滤波信号进行包络谱分析,对单一故障特征进行分离提取;其次,对未能实现单一故障特征提取的滤波信号进行多点峭度谱分析并确定故障周期,应用MOMEDA完成后续分离提取过程。仿真信号和工程应用分析结果表明,该方法能够准确且有效地实现轴承复合故障特征的分离提取。 展开更多
关键词 风电机组 轴承 复合故障 分离提取 谱峭度 多点最优调整的最小熵解卷积
下载PDF
基于MOMEDA和增强倒频谱的风电机组齿轮箱多故障诊断方法 被引量:22
15
作者 胡爱军 严家祥 白泽瑞 《振动与冲击》 EI CSCD 北大核心 2021年第7期268-273,共6页
风电机组齿轮箱结构复杂,当齿轮、轴承存在多故障时,由于各故障强弱不同、故障间相互耦合及噪声干扰,造成故障诊断准确率低及漏诊问题。提出了一种基于多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted... 风电机组齿轮箱结构复杂,当齿轮、轴承存在多故障时,由于各故障强弱不同、故障间相互耦合及噪声干扰,造成故障诊断准确率低及漏诊问题。提出了一种基于多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)和增强倒频谱的风电机组齿轮箱多故障诊断方法。依据齿轮和轴承不同部位的故障特征频率设置合理的解卷积周期,利用MOMEDA对原始信号进行预处理;再通过增强倒频谱进一步抑制噪声干扰和增强故障特征;将增强倒频谱中的突出成分与齿轮箱故障特征频率对比,判断故障类型。实际风电机组齿轮箱多故障振动试验数据分析结果表明,该方法可以有效地提取出齿轮箱多故障特征信息。 展开更多
关键词 齿轮箱 多故障诊断 特征提取 多点最优最小熵解卷积(MOMEDA) 增强倒频谱
下载PDF
改进的共振稀疏分解方法及其在滚动轴承复合故障诊断中的应用 被引量:12
16
作者 张守京 慎明俊 +1 位作者 杨静雯 吴芮 《中国机械工程》 EI CAS CSCD 北大核心 2022年第14期1697-1706,共10页
滚动轴承复合故障信号中各故障特征受到传输路径和其他干扰源的影响,在多缺陷共存条件下提取单个缺陷诱发的故障特征存在困难。提出一种基于双参数优化、子带重构改进的共振稀疏分解(RSSD)滚动轴承复合故障诊断方法:首先利用人工鱼群算... 滚动轴承复合故障信号中各故障特征受到传输路径和其他干扰源的影响,在多缺陷共存条件下提取单个缺陷诱发的故障特征存在困难。提出一种基于双参数优化、子带重构改进的共振稀疏分解(RSSD)滚动轴承复合故障诊断方法:首先利用人工鱼群算法自适应选择RSSD的品质因子和分解层数以构造与故障特征匹配的最优小波基,获得包含瞬态冲击的低共振分量;然后依据提出的子带筛选准则选择并重构低共振分量中包含瞬态冲击成分的最佳子带;最后通过多点最优最小熵反卷积(MOMEDA)方法识别并提取重构信号中周期性故障冲击。仿真信号和轴承全寿命周期复合故障信号分析结果表明,与RSSD-MCKD方法相比,所提出方法能有效提取复合故障信号中各故障特征,精确实现轴承复合故障诊断。 展开更多
关键词 共振稀疏分解 品质因子 子带重构 多点最优最小熵反卷积
下载PDF
基于MOMEDA与双谱分析的滚动轴承早期故障诊断 被引量:6
17
作者 袁洪芳 穆坤 +1 位作者 马若桐 王华庆 《测控技术》 2019年第8期61-64,68,共5页
滚动轴承早期故障阶段,故障特征微弱且环境噪声干扰严重,采集数据包含大量噪声信息,传统的包络谱分析难以提取故障特征信息。双谱分析理论上可以抑制高斯噪声,但很难从强背景噪声下提取出微弱故障特征。而多点最优调整的最小熵解卷积(Mu... 滚动轴承早期故障阶段,故障特征微弱且环境噪声干扰严重,采集数据包含大量噪声信息,传统的包络谱分析难以提取故障特征信息。双谱分析理论上可以抑制高斯噪声,但很难从强背景噪声下提取出微弱故障特征。而多点最优调整的最小熵解卷积(Multipoint Optimal Minimum Entropy Deconvolution Adjusted,MOMEDA)方法能增强信号中的冲击特征,但其效果和故障信号周期区间等参数有关。利用MOMEDA与双谱分析进行信号处理,将提取到的信号高阶谱特征作为滚动轴承早期故障分类依据。利用MOMEDA方法对采集信号进行滤波处理,提取出有冲击特征的时域信号;对特征增强的信号进行双谱分析,从高阶谱中提取故障特征。经过仿真信号分析和实际轴承故障信号验证,该方法能有效地提取出滚动轴承早期故障特征,实现故障诊断。 展开更多
关键词 多点最优调整最小熵解卷积 双谱分析 故障特征提取 强噪声环境
下载PDF
基于ACMD与改进MOMEDA的滚动轴承故障诊断 被引量:6
18
作者 石佳 黄宇峰 王锋 《振动与冲击》 EI CSCD 北大核心 2023年第16期218-226,261,共10页
针对强背景噪声下滚动轴承故障特征难以提取的问题,提出基于自适应非线性调频分量分解(adaptive chirp mode decomposition,ACMD)与改进多点优化最小熵解卷积(improved multipoint optimal minimum entropy deconvolution adjusted,IMOM... 针对强背景噪声下滚动轴承故障特征难以提取的问题,提出基于自适应非线性调频分量分解(adaptive chirp mode decomposition,ACMD)与改进多点优化最小熵解卷积(improved multipoint optimal minimum entropy deconvolution adjusted,IMOMEDA)的故障诊断方法。(1)为提高信号信噪比,采用基于基尼系数指标的ACMD,进行信号重构预处理;(2)为提高参数设定的准确性,提出改进的MOMEDA方法——利用天鹰优化算法,以多点峭度最大为目标,寻优确定滤波器周期参数;(3)对信号进行包络谱分析,通过对比包络谱的主导频率成分与理论故障特征频率,判断故障类型。仿真及实测数据分析结果表明,该方法能有效提取强背景噪声下的滚动轴承故障信号的特征信息,具备一定的优越性与实用性。 展开更多
关键词 自适应非线性调频分量分解(ACMD) 基尼系数 天鹰化算法 多点最优调整最小熵解卷积 滚动轴承 故障诊断
下载PDF
基于改进MOMEDA的齿轮箱复合故障诊断 被引量:7
19
作者 王志坚 王俊元 +2 位作者 张纪平 赵志芳 寇彦飞 《振动.测试与诊断》 EI CSCD 北大核心 2018年第1期176-181,共6页
总体经验模态分解(ensemble empirical mode decomposition,简称EEMD)对信号分解时由于白噪声选取不当,常造成能量泄露;通过计算多点峭度可以提取冲击性故障周期,但在强噪声环境下其追踪效果并不理想;考虑到多点最优最小熵反褶积(multip... 总体经验模态分解(ensemble empirical mode decomposition,简称EEMD)对信号分解时由于白噪声选取不当,常造成能量泄露;通过计算多点峭度可以提取冲击性故障周期,但在强噪声环境下其追踪效果并不理想;考虑到多点最优最小熵反褶积(multipoint optimal minimum entropy deconvolution adjuste,简称MOMEDA)提取故障时准确度受到故障周期区间范围的影响,提出了基于组合模态函数-多点最优最小熵反褶积(combined mode function-multipoint optimal minimum entropy deconvolution adjuste,简称CMF-MOMEDA)的自适应齿轮箱复合故障特征提取方法。首先,通过EEMD对信号分解,将信号按高低频依次分开;其次,取与原信号相关性强的本征模态函数,通过组合模态函数(combined mode function,简称CMF)将原信号分解为高低两个频带C_h和C_L,分别求其多点峭度谱图,提取故障周期成分;然后,设定合适的周期范围,通过MOMEDA提取故障特征;最后,将该方法应用于齿轮箱故障特征提取,以验证其可行性。 展开更多
关键词 复合故障 特征提取 强噪声环境 多点最优最小熵反褶积 组合模态函数
下载PDF
基于MKurt-MOMEDA和Teager能量算子的柔性薄壁轴承的故障特征提取方法 被引量:5
20
作者 严嵩 李伟光 +2 位作者 赵学智 陈儒 万好 《机床与液压》 北大核心 2021年第6期156-162,共7页
与普通滚动轴承相比,柔性薄壁轴承存在背景冲击载荷,使得故障特征提取难度大。针对这一问题,提出基于MKurt-MOMEDA和Teager能量算子的柔性薄壁轴承故障特征提取方法。利用多点峭度谱(MKurt)对原始故障信号进行分析,确定柔性薄壁轴承故... 与普通滚动轴承相比,柔性薄壁轴承存在背景冲击载荷,使得故障特征提取难度大。针对这一问题,提出基于MKurt-MOMEDA和Teager能量算子的柔性薄壁轴承故障特征提取方法。利用多点峭度谱(MKurt)对原始故障信号进行分析,确定柔性薄壁轴承故障周期,然后通过多点最优最小熵解卷积(MOMEDA)处理,再经Teager能量算子增强,最终提取柔性薄壁轴承外圈与内圈的故障特征频率,并与单一的MOMEDA算法、基于MKurt-MCKD与Teager能量算子故障特征提取方法进行了对比,证明了该方法明显增强了故障特征频率的幅值,为柔性薄壁轴承故障特征提取提供了参考。 展开更多
关键词 柔性薄壁轴承 故障特征提取 多点峭度谱 多点最优最小熵解卷积 TEAGER能量算子
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部