期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
多特征区域的细粒度船舶图像目标识别方法 被引量:2
1
作者 徐志京 孙久武 霍煜豪 《计算机工程与应用》 CSCD 北大核心 2022年第10期224-230,共7页
为解决单一特征细粒度船舶图像识别率低的问题,提出一种循环注意卷积神经网络(recurrent attention convolutional neural network,RA-CNN)与多特征区域融合的船舶目标识别方法。该方法通过在VGG-19网络中引入尺度依赖池化(scale-depend... 为解决单一特征细粒度船舶图像识别率低的问题,提出一种循环注意卷积神经网络(recurrent attention convolutional neural network,RA-CNN)与多特征区域融合的船舶目标识别方法。该方法通过在VGG-19网络中引入尺度依赖池化(scale-dependent pooling,SDP)算法解决小目标过度池化的问题,提升了小型船舶的识别性能;注意建议网络(attention proposal network,APN)加入联合聚类(joint clustering)算法,生成多个独立的特征区域,使整个模型充分利用全局信息,提高了船舶识别精度;同时设计特征区域优化方法降低多个特征区域的重叠率,解决了过拟合问题;通过定义新的损失函数来交叉训练VGG-19和APN,加快了收敛速度。利用公开的光电船舶数据集对该方法进行测试实验,识别准确率最高可达90.2%,无论是识别率还是模型的鲁棒性较单特征都有了很大的提升。 展开更多
关键词 船舶识别 细粒度图像 多特征区域 循环注意卷积神经网络(RA-CNN)
下载PDF
多特征区域FastICA的非接触式心率检测 被引量:4
2
作者 王一丁 李飞虎 《计算机系统应用》 2021年第1期154-161,共8页
人脸视频单特征区域的非接触式心率检测方法,提取的脉搏波信号在视频采集过程中易受运动和光照的影响.为了减弱运动伪差和光照不均对脉搏波信号的干扰,本文提出了一种多特征区域结合快速独立成分分析的非接触式心率信号提取方法.通过人... 人脸视频单特征区域的非接触式心率检测方法,提取的脉搏波信号在视频采集过程中易受运动和光照的影响.为了减弱运动伪差和光照不均对脉搏波信号的干扰,本文提出了一种多特征区域结合快速独立成分分析的非接触式心率信号提取方法.通过人脸特征点算法结合区域中心定位的方法选择多特征区域,保证了视频图像特征区域的稳定性;使用快速独立成分分析实现多特征区域中图像绿色通道血容量变化脉冲信号之间的相互补偿,降低了光照不均匀的影响.在国外公开数据集DEAP上进行实验,实验结果表明,本文方法优于已有基于独立成分分析,独立矢量分析的方法. 展开更多
关键词 血容量变化脉冲信号 快速独立成分分析 人脸特征点检测 多特征区域
下载PDF
Multi-dimensional and Multi-threshold Airframe Damage Region Division Method Based on Correlation Optimization
3
作者 CAI Shuyu SHI Tao SHI Lizhong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期788-799,共12页
In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlatio... In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlation optimization is proposed.On the basis of airframe damage feature analysis,the multi-dimensional feature entropy is defined to realize the full fusion of multiple feature information of the image,and the division method is extended to multi-threshold to refine the damage division and reduce the impact of the damage adjacent region’s morphological changes on the division.Through the correlation parameter optimization algorithm,the problem of low efficiency of multi-dimensional multi-threshold division method is solved.Finally,the proposed method is compared and verified by instances of airframe damage image.The results show that compared with the traditional threshold division method,the damage region divided by the proposed method is complete and accurate,and the boundary is clear and coherent,which can effectively reduce the interference of many factors such as uneven luminance,chromaticity deviation,dirt attachment,image compression,and so on.The correlation optimization algorithm has high efficiency and stable convergence,and can meet the requirements of aircraft intelligent maintenance. 展开更多
关键词 airframe damage region division multi-dimensional feature entropy MULTI-THRESHOLD correlation optimization aircraft intelligent maintenance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部