期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
特征自适应融合插值的点云语义分割算法 被引量:1
1
作者 朱芬芬 王蕾 刘华 《现代电子技术》 2023年第12期175-181,共7页
点云语义分割是场景理解的基础问题。大多数针对大场景点云的语义分割方法精心设计局部特征聚合模块以减少降采样点云过程中的信息损失,然而未能高效地利用多尺度局部特征推理点云语义信息。为此,文中提出一种多尺度特征自适应融合的插... 点云语义分割是场景理解的基础问题。大多数针对大场景点云的语义分割方法精心设计局部特征聚合模块以减少降采样点云过程中的信息损失,然而未能高效地利用多尺度局部特征推理点云语义信息。为此,文中提出一种多尺度特征自适应融合的插值方法,以实现更准确的大场景点云语义分割算法。首先,通过注意力机制的局部特征聚合模块学习点云内部的语义关系,描述局部模式的各项异性;然后,以不同的采样率随机地采样点云产生多尺度的稀疏局部特征图;最后,使用特征自适应融合的插值法代替广泛使用的最近邻插值法,恢复全分辨率的特征图,为原始密度的点云提供更准确的语义信息。在SemanticKITTI和S3DIS两个大场景点云数据集上对所提算法进行评估,结果表明,所提算法的平均交并比(mIoU)分别为54.24%、75.5%,平均准确率(mACC)分别达到88.92%、86.5%,比大多数主流算法的分割效果更加准确。 展开更多
关键词 点云语义分割 注意力机制 自适应融合插值 局部特征聚合模块 深度学习 随机降采样
下载PDF
融合卷积和Transformer的多尺度皮肤病变分割算法
2
作者 蒋新辉 李筱林 +1 位作者 韦春苗 覃镇锋 《无线电工程》 2024年第3期670-678,共9页
皮肤病变自动分割对协助医生临床诊断、治疗及术后观察都具有非常重要的意义。现有卷积擅长建立局部相关性但无法捕获像素长程依赖关系,而Tansformer可以建立特征信息的全局依赖关系但会造成局部细节信息丢失。因此,提出了一种融合卷积... 皮肤病变自动分割对协助医生临床诊断、治疗及术后观察都具有非常重要的意义。现有卷积擅长建立局部相关性但无法捕获像素长程依赖关系,而Tansformer可以建立特征信息的全局依赖关系但会造成局部细节信息丢失。因此,提出了一种融合卷积和Transformer的多尺度自动分割网络。采用ResNet34作为基础编码块,利用其金字塔结构建立病灶的多级局部相关性;采用Swin Transformer模块捕获上下文特征的长程依赖关系,考虑到病灶形状多变、大小不一等情况,提出多尺度特征聚合模块来进一步提取上下文特征多尺度信息;采用具有注意力机制的解码块逐步融合编码块提取到的多级语义信息。实验结果表明,所提模型在ISIC 2017数据集上测试所得的Dice系数分别高达89.55%,FPS高达83,与其他先进模型相比,本模型参数更少、推理速度更快、精度更高。 展开更多
关键词 图像处理 Swin Transformer 多尺度特征聚合模块 注意力机制
下载PDF
基于循环生成对抗网络的人脸素描合成 被引量:3
3
作者 葛延良 孙笑笑 +2 位作者 张乔 王冬梅 王肖肖 《吉林大学学报(理学版)》 CAS 北大核心 2022年第4期897-905,共9页
针对当前卷积神经网络通常以降低感受野为条件获得多尺度图像特征,以及很难捕获各特征通道之间重要关系的问题,结合循环生成对抗网络结构的特点提出一种新的多尺度自注意力机制的循环生成对抗网络.首先,在生成器中使用VGG16模块组成U-Ne... 针对当前卷积神经网络通常以降低感受野为条件获得多尺度图像特征,以及很难捕获各特征通道之间重要关系的问题,结合循环生成对抗网络结构的特点提出一种新的多尺度自注意力机制的循环生成对抗网络.首先,在生成器中使用VGG16模块组成U-Net结构网络,以增强对图像特征信息的提取,同时对网络中的下采样和上采样进行改进,以提高特征分辨率,获取更多的细节信息;其次,设计多尺度特征聚合模块,采用不同采样率的多个并行空洞卷积,整合了不同尺度上的空间信息,在保持图像较大感受野的同时,多比例地捕捉图像信息;最后,为捕获空间维度和通道维度中的特征依赖关系,设计像素自注意力模块对空间维度和通道维度上的语义依赖关系进行建模,以增强图像特征的表现能力,提高生成素描图像的质量. 展开更多
关键词 深度学习 循环生成对抗网络 空洞卷积 多尺度特征聚合模块 像素自注意力模块
下载PDF
基于改进YOLOv5的安全帽佩戴检测算法
4
作者 周华平 郭依文 孙克雷 《安徽理工大学学报(自然科学版)》 CAS 2022年第3期99-108,共10页
针对现有的安全帽佩戴检测算法难以有效地检测小目标、重叠和遮挡目标的错检、漏检等问题,提出了一种基于改进YOLOv5的安全帽佩戴检测算法。首先,在主干网络增加了一层有效特征提取层更容易检测小目标,同时对颈部原有的特征金字塔结构... 针对现有的安全帽佩戴检测算法难以有效地检测小目标、重叠和遮挡目标的错检、漏检等问题,提出了一种基于改进YOLOv5的安全帽佩戴检测算法。首先,在主干网络增加了一层有效特征提取层更容易检测小目标,同时对颈部原有的特征金字塔结构进行改进,使特征融合得到加强,提升了对小目标检测的准确性;其次,在主干网络中引入了有效通道注意力机制模块(ECA-Net),更容易获取小目标的关键信息,增强了模型对小目标检测的性能;最后,引入CIOU-NMS替换NMS使得网络既考虑到预测框和真实框之间的重叠面积,还考虑到两个框之间的中心点的距离和宽高比,解决了对重叠和遮挡目标的错检、漏检问题。实验结果证明,改进后的算法平均检测精度(MAP)达到了97.2%,较原始YOLOv5算法提升了3.8%,满足施工场景下对安全帽佩戴检测准确率的要求。 展开更多
关键词 YOLOv5 有效特征提取层 特征金字塔结构 注意力机制模块 非极大值抑制(NMS)
下载PDF
基于改进U-net的金属工件表面缺陷分割方法 被引量:3
5
作者 王一 龚肖杰 程佳 《激光与光电子学进展》 CSCD 北大核心 2023年第15期323-328,共6页
针对金属工件表面缺陷分割精度低的问题,通过对工件表面图像缺陷特征研究,提出以U-net为基础,结合多尺度自适应形态特征提取模块及瓶颈注意力模块的工件表面缺陷分割模型。首先,在网络中嵌入多特征注意力有效聚合模块,提高信息的利用率... 针对金属工件表面缺陷分割精度低的问题,通过对工件表面图像缺陷特征研究,提出以U-net为基础,结合多尺度自适应形态特征提取模块及瓶颈注意力模块的工件表面缺陷分割模型。首先,在网络中嵌入多特征注意力有效聚合模块,提高信息的利用率,提取更多相关特征,从而高精度地提取缺陷目标。然后,在网络中引入瓶颈注意力模块,增加缺陷目标的权重,优化特征的提取,获取更多的特征信息,从而获得更好的分割精度。改进后的网络平均精度达到0.8749,比原网络相比提高了2.92%,平均交并比达到0.8625,提高了3.72%。与原始网络相比,改进后的网络具有更好分割的精度,可以获得更好的分割结果。 展开更多
关键词 表面光学 表面缺陷 图像分割 U-net网络 多特征注意力有效聚合模块 瓶颈注意力模块
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部