期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
结合ChineseBERT和多特征网络的数学命名实体识别 被引量:1
1
作者 白建侠 《信息技术》 2024年第8期158-162,共5页
针对基础深度学习模型特征提取能力不足,词向量语义表达不准确等问题,提出了结合ChineseBERT和多特征网络的数学命名实体识别模型。ChineseBERT结合当前词的上下文动态调整向量表示,提高词向量语义表示准确性;多特征网络通过改进的卷积... 针对基础深度学习模型特征提取能力不足,词向量语义表达不准确等问题,提出了结合ChineseBERT和多特征网络的数学命名实体识别模型。ChineseBERT结合当前词的上下文动态调整向量表示,提高词向量语义表示准确性;多特征网络通过改进的卷积网络和双向简单循环单元同时捕捉字符局部和全局序列特征,软注意力机制识别出对实体识别影响较大的关键特征,由条件随机场输出识别结果。在真实数学数据集进行实验,结果表明该模型F1分数达到了97.67%,高于近期表现较好的深度学习模型,简单循环单元训练效率更高,证明了模型的有效性。 展开更多
关键词 命名实体识别 ChineseBERT 多特征网络 多尺度卷积 软注意力
下载PDF
基于多特征融合时差网络的带式输送机区域违规行为识别
2
作者 马天 姜梅 +2 位作者 杨嘉怡 张杰慧 丁旭涵 《工矿自动化》 CSCD 北大核心 2024年第7期115-122,共8页
现有的煤矿井下带式输送机区域违规行为(如攀爬、跨越、倚靠带式输送机等)识别方法对特征提取不充分、难以考虑到行为时间差异,导致违规行为识别准确率不高。针对该问题,基于ResNet50模型,提出了一种基于多特征融合时差网络(MFFTDN)的... 现有的煤矿井下带式输送机区域违规行为(如攀爬、跨越、倚靠带式输送机等)识别方法对特征提取不充分、难以考虑到行为时间差异,导致违规行为识别准确率不高。针对该问题,基于ResNet50模型,提出了一种基于多特征融合时差网络(MFFTDN)的带式输送机区域违规行为识别方法,将多特征融合和时间差分进行结合,对不同时间段的行为进行多特征融合。首先在原始模型ResNet50的第2和第3阶段引入短期多特征融合(STMFF)模块,将来自多个连续帧的时间和特征拼接在一起,再对融合后的特征进行时间差分计算,即相邻帧的特征差值,以在短期内捕捉局部动作变化。然后在原始模型ResNet50的第4阶段引入长期多特征融合(LTMFF)模块,将来自连续帧的短期多特征拼接在一起,再对相邻时间点的特征进行时间差分计算,以获取行为的长期多特征。最后将融合后的特征进行分类,输出识别结果。实验结果表明:①该方法的平均精度和准确率较原始模型ResNet50分别提高了8.18%和8.47%,说明同时引入STMFF和LTMFF模块能够有效提取到不同时间段的多特征信息。②该方法在自建煤矿井下带式输送机区域违规行为数据集上的准确率为89.62%,平均精度为89.30%,模型的参数量为197.2×10^(6)。③Grad−CAM热力图显示,该方法能够更有效地关注到违规行为的关键区域,精确捕捉到井下带式输送机区域的违规行为。 展开更多
关键词 带式输送机 不安全行为 违规行为识别 短期多特征融合 长期多特征融合 多特征融合时差网络 时间差分
下载PDF
管道漏磁信号分类的多特征融合网络研究
3
作者 魏媛媛 刘瑞萍 +1 位作者 付世沫 王耀力 《太原理工大学学报》 CAS 北大核心 2024年第5期929-936,共8页
【目的】地下管道如预应力钢筒混凝土管(PCCP)等检漏是城市基础设施管理和维护中至关重要的一项工作。提出一种识别地下管道弱磁分布类型的磁异常多特征融合网络(MMF)。【方法】充分利用标准正交基函数(OBF)和最小熵(MED)两种检测特征,... 【目的】地下管道如预应力钢筒混凝土管(PCCP)等检漏是城市基础设施管理和维护中至关重要的一项工作。提出一种识别地下管道弱磁分布类型的磁异常多特征融合网络(MMF)。【方法】充分利用标准正交基函数(OBF)和最小熵(MED)两种检测特征,以全面而准确地捕捉漏磁信号的复杂特性。首先,在不同物径距离上利用OBF和MED进行磁异常检测,获取实测目标磁场特征;其次,融合磁场特征设计多特征融合网络MMF,并引入多头注意力机制捕捉序列磁场中的复杂关系和特征;最后,采用多特征熵权法MFEW,根据输入特征熵分配网络权重。【结果】实验结果显示,MMF网络异常分类达到了98.86%的精度,AUC评估结果为99.25%,同时模型更加精简,具有更高的计算效率,能够在相对较短的训练时间内取得令人满意的性能。 展开更多
关键词 信号检测与分类 多特征融合网络 熵权法 多头注意力机制
下载PDF
基于多特征融合的卷积神经网络的电能质量扰动识别方法 被引量:9
4
作者 吴怀诚 刘家强 +2 位作者 岳蕾 徐凯 张秋慧 《电网与清洁能源》 CSCD 北大核心 2023年第9期19-23,31,共6页
电能质量扰动的识别是电力系统故障预警与识别的重要手段。电网中,变压器系统存在的电能质量扰动通常为叠加扰动波形。为提高扰动智能识别框架的准确度,提出了一种基于多特征融合卷积神经网络(multi feature convolution neural network... 电能质量扰动的识别是电力系统故障预警与识别的重要手段。电网中,变压器系统存在的电能质量扰动通常为叠加扰动波形。为提高扰动智能识别框架的准确度,提出了一种基于多特征融合卷积神经网络(multi feature convolution neural network,MFCNN)的电能质量扰动的识别模型。提出的MFCNN模型具有2个子模型,将原始的时域数据和经过快速傅里叶变换(fast Fourier transform,FFT)所得频域数据分别作为2个子模型的输入,通过对时域、频域信息的特征融合来实现复杂扰动信号的识别;利用多组电能质量叠加扰动数据,训练传统机器学习模型和MFCNN模型,对比不同模型对电能质量扰动识别的准确率,验证MFCNN模型的有效性。实验结果表明,MFCNN模型对于7种扰动信号的识别准确率均可达到91.6%以上,其中,谐波和陷波叠加扰动信号的准确率为92.9%,具有更强的识别能力。 展开更多
关键词 电力系统故障 电能质量扰动 变压器 多特征卷积神经网络 快速傅里叶变换
下载PDF
多特征融合CNN网络的旋转机械故障诊断研究 被引量:9
5
作者 冷佳 刘镇 +1 位作者 张笑非 汤浩宇 《软件导刊》 2021年第9期44-50,共7页
为提高旋转机械故障诊断中故障分类的准确率,以及针对故障数据特征不充足而带来的泛化能力较差问题,提出一种多特征融合卷积神经网络(CNN)的旋转机械故障诊断方法。首先利用连续小波变换将一维原始信号转换成二维小波时频图,构建多特征... 为提高旋转机械故障诊断中故障分类的准确率,以及针对故障数据特征不充足而带来的泛化能力较差问题,提出一种多特征融合卷积神经网络(CNN)的旋转机械故障诊断方法。首先利用连续小波变换将一维原始信号转换成二维小波时频图,构建多特征融合CNN网络模型。其中,原始振动信号为1DCNN模型输入,小波时频图为2DCNN模型输入;然后根据上面两个维度的输入进行网络模型训练;最后将测试集中的数据输入到已经训练好的网络模型,对不同旋转机械故障进行分类。在凯斯西储大学的轴承数据集、机械故障预防技术(MFPT)的轴承数据集上进行实验验证,结果表明,该方法与其他同类方法相比具有更高的故障诊断准确率,达到了99.78%。 展开更多
关键词 连续小波变换 多特征融合CNN网络 滚动轴承 故障诊断
下载PDF
基于混淆网络解码的机器翻译多系统融合 被引量:3
6
作者 杜金华 魏玮 徐波 《中文信息学报》 CSCD 北大核心 2008年第4期48-54,共7页
在对当前几种较流行的统计机器翻译多系统融合方法分析的基础上,提出了一种改进的多系统融合框架,该框架集成了最小贝叶斯风险解码和多特征混淆网络解码两种技术。融合过程如下:(1)从多个翻译系统输出的-best结果中,利用最小贝叶斯风险... 在对当前几种较流行的统计机器翻译多系统融合方法分析的基础上,提出了一种改进的多系统融合框架,该框架集成了最小贝叶斯风险解码和多特征混淆网络解码两种技术。融合过程如下:(1)从多个翻译系统输出的-best结果中,利用最小贝叶斯风险解码器选择一个风险最小的假设作为对齐参考;(2)将其余的-best假设结果与该参考对齐,从而构建混淆网络。多特征混淆网络基于对数线性模型,引入了更多有效的知识源参与最优路径选择,融合后的BLEU得分比融合前最好的单系统BLEU得分提高了2.19%。在对齐方法上,我们提出了一种改进的翻译错误率(Translation Error Rate,TER)准则——GIZA-TER准则,该准则可以对CN网络进行更有效的短语调序。实验中的显著性检验证明了本文方法的有效性。 展开更多
关键词 人工智能 机器翻译 多系统融合 最小贝叶斯风险解码 多特征混淆网络 GIZA—TER
下载PDF
基于深度学习的风机叶片缺陷识别
7
作者 张永贺 吴砚辉 +3 位作者 马本言 霍道明 李鉴衡 魏巍 《人工智能》 2024年第3期77-84,共8页
本研究提出了一种基于深度学习的风机叶片缺陷识别方法,旨在提高风机维护效率和可靠性。方法包括数据采集与预处理、多特征融合残差网络设计、损失函数定义、迁移学习,以及实验验证等步骤。实现了对风机叶片缺陷的高效识别,通过对模型... 本研究提出了一种基于深度学习的风机叶片缺陷识别方法,旨在提高风机维护效率和可靠性。方法包括数据采集与预处理、多特征融合残差网络设计、损失函数定义、迁移学习,以及实验验证等步骤。实现了对风机叶片缺陷的高效识别,通过对模型的时间性能和F1分数的比较。实验结果表明,多特征融合残差网络在计算效率和识别性能方面都具有显著优势。该方法为风机叶片巡检提供了有力的技术支撑。 展开更多
关键词 深度学习 风机叶片缺陷识别 多特征融合残差网络
下载PDF
Underwater Image Enhancement Based on Multi-scale Adversarial Network
8
作者 ZENG Jun-yang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期70-77,共8页
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea... In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm. 展开更多
关键词 Underwater image enhancement Generative adversarial network Multi-scale feature extraction Residual dense block
下载PDF
Infrasound Event Classification Fusion Model Based on Multiscale SE-CNN and BiLSTM
9
作者 Hongru Li Xihai Li +3 位作者 Xiaofeng Tan Chao Niu Jihao Liu Tianyou Liu 《Applied Geophysics》 SCIE CSCD 2024年第3期579-592,620,共15页
The classification of infrasound events has considerable importance in improving the capability to identify the types of natural disasters.The traditional infrasound classification mainly relies on machine learning al... The classification of infrasound events has considerable importance in improving the capability to identify the types of natural disasters.The traditional infrasound classification mainly relies on machine learning algorithms after artificial feature extraction.However,guaranteeing the effectiveness of the extracted features is difficult.The current trend focuses on using a convolution neural network to automatically extract features for classification.This method can be used to extract signal spatial features automatically through a convolution kernel;however,infrasound signals contain not only spatial information but also temporal information when used as a time series.These extracted temporal features are also crucial.If only a convolution neural network is used,then the time dependence of the infrasound sequence will be missed.Using long short-term memory networks can compensate for the missing time-series features but induces spatial feature information loss of the infrasound signal.A multiscale squeeze excitation–convolution neural network–bidirectional long short-term memory network infrasound event classification fusion model is proposed in this study to address these problems.This model automatically extracted temporal and spatial features,adaptively selected features,and also realized the fusion of the two types of features.Experimental results showed that the classification accuracy of the model was more than 98%,thus verifying the effectiveness and superiority of the proposed model. 展开更多
关键词 infrasound classification channel attention convolution neural network bidirectional long short-term memory network multiscale feature fusion
下载PDF
多特征混合模型文本情感分析方法 被引量:10
10
作者 李文亮 杨秋翔 秦权 《计算机工程与应用》 CSCD 北大核心 2021年第19期205-213,共9页
近年来,深度学习被广泛应用于文本情感分析。其中文本卷积神经网络(TextCNN)最具代表性,但是TxetCNN的语义特征提取存在词嵌入维度语义特征丢失、最大池化算法特征提取不足和文本长期依赖关系丢失的问题。针对以上问题,提出多特征混合模... 近年来,深度学习被广泛应用于文本情感分析。其中文本卷积神经网络(TextCNN)最具代表性,但是TxetCNN的语义特征提取存在词嵌入维度语义特征丢失、最大池化算法特征提取不足和文本长期依赖关系丢失的问题。针对以上问题,提出多特征混合模型(BiLSTM-MFCNN)的文本情感分析方法。该方法使用双向长短记忆网络(BiLSTM)学习文本的长期依赖关系;改进TextCNN的卷积层和池化层提出多特征卷积神经网络(MFCNN),卷积层利用五种不同的卷积算法,分别从句子维度、整个词嵌入维度、单个词嵌入维度、相邻词向量维度和单个词向量维度提取文本的语义特征,池化层利用最大池化算法和平均池化算法,获取文本的情感特征。在中文NLPCCEmotion Classification Challenge和COAE2014数据集、英文Twitter数据集进行对比实验,实验结果表明该混合模型在文本情感分析任务中能够取得更好的效果。 展开更多
关键词 文本情感分析 混合模型 双向长短记忆网络(BiLSTM) 多特征卷积神经网络(MFCNN)
下载PDF
基于深度学习的网站类型识别研究
11
作者 尹杰 倪鹏锐 《电子设计工程》 2023年第21期42-46,共5页
针对目前基础深度学习模型特征提取能力较弱,静态词向量模型无法表示多义词以及网站类型识别准确率不高等问题,提出了基于ERNIE2.0-MCNN-BiSRU-AT的网站类型识别模型。采用ERNIE2.0通过结合当前词的具体上下文语境学习到动态向量表征,... 针对目前基础深度学习模型特征提取能力较弱,静态词向量模型无法表示多义词以及网站类型识别准确率不高等问题,提出了基于ERNIE2.0-MCNN-BiSRU-AT的网站类型识别模型。采用ERNIE2.0通过结合当前词的具体上下文语境学习到动态向量表征,解决静态词向量存在的一词多义问题;多特征融合网络全面地捕捉多个尺度下的局部语义和上下文序列特征,软注意力机制计算每个特征对网络分类结果的权重得分,以突出关键分类特征。线性分类层输出网站类型识别结果。在真实网站类型数据集上进行实验,相关结果表明,ERNIE2.0-MCNN-BiSRU-AT模型F1值达到了95.67%,高于实验对比的近期表现优秀的深度学习模型,并通过大量消融对比实验验证了各个功能模块的有效性。 展开更多
关键词 网站分类 ERNIE2.0 多特征融合网络 软注意力 BiSRU
下载PDF
Neighborhood fusion-based hierarchical parallel feature pyramid network for object detection 被引量:3
12
作者 Mo Lingfei Hu Shuming 《Journal of Southeast University(English Edition)》 EI CAS 2020年第3期252-263,共12页
In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid... In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid network(FPN)and deconvolutional single shot detector(DSSD),where the bottom layer of the feature pyramid network relies on the top layer,NFPN builds the feature pyramid network with no connections between the upper and lower layers.That is,it only fuses shallow features on similar scales.NFPN is highly portable and can be embedded in many models to further boost performance.Extensive experiments on PASCAL VOC 2007,2012,and COCO datasets demonstrate that the NFPN-based SSD without intricate tricks can exceed the DSSD model in terms of detection accuracy and inference speed,especially for small objects,e.g.,4%to 5%higher mAP(mean average precision)than SSD,and 2%to 3%higher mAP than DSSD.On VOC 2007 test set,the NFPN-based SSD with 300×300 input reaches 79.4%mAP at 34.6 frame/s,and the mAP can raise to 82.9%after using the multi-scale testing strategy. 展开更多
关键词 computer vision deep convolutional neural network object detection hierarchical parallel feature pyramid network multi-scale feature fusion
下载PDF
A multi-scale convolutional auto-encoder and its application in fault diagnosis of rolling bearings 被引量:9
13
作者 Ding Yunhao Jia Minping 《Journal of Southeast University(English Edition)》 EI CAS 2019年第4期417-423,共7页
Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on ... Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data. 展开更多
关键词 fault diagnosis deep learning convolutional auto-encoder multi-scale convolutional kernel feature extraction
下载PDF
Multiwavelets domain singular value features for image texture classification 被引量:1
14
作者 RAMAKRISHNAN S. SELVAN S. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第4期538-549,共12页
A new approach based on multiwavelets transformation and singular value decomposition (SVD) is proposed for the classification of image textures. Lower singular values are truncated based on its energy distribution to... A new approach based on multiwavelets transformation and singular value decomposition (SVD) is proposed for the classification of image textures. Lower singular values are truncated based on its energy distribution to classify the textures in the presence of additive white Gaussian noise (AWGN). The proposed approach extracts features such as energy, entropy, local homogeneity and max-min ratio from the selected singular values of multiwavelets transformation coefficients of image textures. The classification was carried out using probabilistic neural network (PNN). Performance of the proposed approach was compared with conventional wavelet domain gray level co-occurrence matrix (GLCM) based features, discrete multiwavelets transformation energy based approach, and HMM based approach. Experimental results showed the superiority of the proposed algorithms when compared with existing algorithms. 展开更多
关键词 Image texture classification Multiwavelets transformation Probabilistic neural network (PNN)
下载PDF
Multidimensional attention and multiscale upsampling for semantic segmentation
15
作者 LU Zhongda ZHANG Chunda +1 位作者 WANG Lijing XU Fengxia 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第1期68-78,共11页
Semantic segmentation is for pixel-level classification tasks,and contextual information has an important impact on the performance of segmentation.In order to capture richer contextual information,we adopt ResNet as ... Semantic segmentation is for pixel-level classification tasks,and contextual information has an important impact on the performance of segmentation.In order to capture richer contextual information,we adopt ResNet as the backbone network and designs an encoder-decoder architecture based on multidimensional attention(MDA)module and multiscale upsampling(MSU)module.The MDA module calculates the attention matrices of the three dimensions to capture the dependency of each position,and adaptively captures the image features.The MSU module adopts parallel branches to capture the multiscale features of the images,and multiscale feature aggregation can enhance contextual information.A series of experiments demonstrate the validity of the model on Cityscapes and Camvid datasets. 展开更多
关键词 semantic segmentation attention mechanism multiscale feature convolutional neural network(CNN) residual network(ResNet)
下载PDF
基于双注意力卷积及Transformer融合的非均匀去雾算法
16
作者 王科平 张自娇 +2 位作者 杨艺 费树岷 韦金阳 《北京邮电大学学报》 EI CAS CSCD 北大核心 2024年第2期30-37,共8页
针对现有大部分去雾算法中对不同雾霾区域关注不足以及浓雾区域细节信息恢复不理想的问题,提出了一种结合卷积神经网络和Transformer模块的非均匀去雾算法。首先,为了更好地关注浓雾区域,在浅层特征提取阶段构建了并联双注意力卷积网络... 针对现有大部分去雾算法中对不同雾霾区域关注不足以及浓雾区域细节信息恢复不理想的问题,提出了一种结合卷积神经网络和Transformer模块的非均匀去雾算法。首先,为了更好地关注浓雾区域,在浅层特征提取阶段构建了并联双注意力卷积网络,分别从像素和通道的角度给图像分配不同的权重;其次,在深层特征提取中,引入了Transformer模块进行全局非均匀雾霾区域特征提取,既能有效捕捉特征之间的长距离依赖关系,又避免了普通卷积扩大感受野导致细节信息丢失的问题;最后,设计了多特征融合重建网络,能够自适应地融合浅层和深层特征,从而重构清晰图像。在公共数据集和自建非均匀雾霾数据集上进行了大量实验,结果表明,所提算法在视觉效果和客观评价指标上均优于其他对比算法。 展开更多
关键词 非均匀去雾 双注意力卷积 Transformer模块 多特征融合重建网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部