This paper investigates the relay selection and resource allocation problem in multiuser orthogonal frequency division multiplexing (OFDM) based cooperative cellular networks, in which user nodes could relay informa...This paper investigates the relay selection and resource allocation problem in multiuser orthogonal frequency division multiplexing (OFDM) based cooperative cellular networks, in which user nodes could relay information for each other using the decode-and-forward (DF) protocol to achieve spatial diversity gain. Specifically, the paper proposes an optimal joint relay selection and resource allocation (0RSRA) algorithm whose objective is to maximize system total achievable data rate with the constraints of each user' s individual quality of service (QoS) requirement and transmission power. Due to being a mixed binary integer programming (MBIP) problem, a novel two-level Lagrangian dual-primal decomposition and subgradient projection approach is proposed to not only select the appropriate cooperative relay nodes, but also allocate subcarries and power optimally. Simulation re- suits demonstrate that our proposed scheme can efficiently enhance overall system data rate and guarantee each user' s QoS requirement. Meanwhile, the fairness among users can be improved dramatically.展开更多
基金Supported by the National Natural Science Foundation for Distinguished Young Scholar ( No. 61001115 ) and the Beijing Municipal Natural Science Foundation ( No. 4102044).
文摘This paper investigates the relay selection and resource allocation problem in multiuser orthogonal frequency division multiplexing (OFDM) based cooperative cellular networks, in which user nodes could relay information for each other using the decode-and-forward (DF) protocol to achieve spatial diversity gain. Specifically, the paper proposes an optimal joint relay selection and resource allocation (0RSRA) algorithm whose objective is to maximize system total achievable data rate with the constraints of each user' s individual quality of service (QoS) requirement and transmission power. Due to being a mixed binary integer programming (MBIP) problem, a novel two-level Lagrangian dual-primal decomposition and subgradient projection approach is proposed to not only select the appropriate cooperative relay nodes, but also allocate subcarries and power optimally. Simulation re- suits demonstrate that our proposed scheme can efficiently enhance overall system data rate and guarantee each user' s QoS requirement. Meanwhile, the fairness among users can be improved dramatically.