This paper investigates the relay selection and resource allocation problem in multiuser orthogonal frequency division multiplexing (OFDM) based cooperative cellular networks, in which user nodes could relay informa...This paper investigates the relay selection and resource allocation problem in multiuser orthogonal frequency division multiplexing (OFDM) based cooperative cellular networks, in which user nodes could relay information for each other using the decode-and-forward (DF) protocol to achieve spatial diversity gain. Specifically, the paper proposes an optimal joint relay selection and resource allocation (0RSRA) algorithm whose objective is to maximize system total achievable data rate with the constraints of each user' s individual quality of service (QoS) requirement and transmission power. Due to being a mixed binary integer programming (MBIP) problem, a novel two-level Lagrangian dual-primal decomposition and subgradient projection approach is proposed to not only select the appropriate cooperative relay nodes, but also allocate subcarries and power optimally. Simulation re- suits demonstrate that our proposed scheme can efficiently enhance overall system data rate and guarantee each user' s QoS requirement. Meanwhile, the fairness among users can be improved dramatically.展开更多
An energy effi cient resource allocation scheme in timesharing multiuser system with a hybrid energy harvesting transmitter is studied in this paper. Specially, the operation energy of system is supplied by constant e...An energy effi cient resource allocation scheme in timesharing multiuser system with a hybrid energy harvesting transmitter is studied in this paper. Specially, the operation energy of system is supplied by constant energy and energy harvesting, which harvests energy from external environment. Our goal is to maximize the energy effi ciency of timesharing multiuser systems by considering jointly allocation of transmission time and power control in an off-line manner. The original nonconvex objective function is transformed into convex optimization problem via the fractional programming approach. Then, we solve the convex problem by Lagrange dual decomposition method. Simulation results show that the proposed energy efficient resource allocation scheme has a better performance than the scheme which decomposes optimization problem into two parts(power allocation, time allocation) to solve iteratively.展开更多
The pursuit of high data rate and assurance of quality of experience(QoE) for end users represent the main goals of future wireless communication systems.By introducing MOS(Mean Opinion Score) based assessment models ...The pursuit of high data rate and assurance of quality of experience(QoE) for end users represent the main goals of future wireless communication systems.By introducing MOS(Mean Opinion Score) based assessment models for different types of applications,this paper proposed novel QoE-oriented radio resource allocation(RRA) algorithms for multiuser-multiservice femtocell networks.An optimal QoE-oriented RRA strategy is first analyzed using time-sharing method which is applicable to best effort applications.RRA algorithms based on the cross-layer architecture are then proposed for all types of applications by considering parameters extracted from different layers of networking protocols.In the proposed algorithms,a priority mechanism is employed to ensure fairness.Simulation results show that the proposed algorithms can significantly improve the overall perceived quality from the users' perspective in comparison with traditional Quality of Service(QoS)oriented algorithms.展开更多
In this paper, we investigate a resource allocation issue in OFDMA-based decode-and-forward cooperative multiuser networks and propose joint subcarrier and power allocation schemes. The optimal solution of this combin...In this paper, we investigate a resource allocation issue in OFDMA-based decode-and-forward cooperative multiuser networks and propose joint subcarrier and power allocation schemes. The optimal solution of this combinable allocation shows high computational complexity, so we allocate subcarriers and power separately. At firstly, we distribute subcarriers to relays and users under the assumption of equal power distribution. Here, we propose an equal capacity increment (ECI) allocation strategy to achieve tradeoff between total throughput and fairness. To further improve the system performance, we introduce threshold into ECI strategy, named ECI strategy with threshold (ECI-T), where subcarriers with bad performance are prevented from transmitting. Subsequently, a water-filling method is adopted to distribute the power to cooperative links in order to fully utilize the limited power. Simulation results show that system performance of the proposed schemes is significantly enhanced compared with an existing resource allocation scheme. Besides, the resource allocation schemes with the water- filling method notably outperform schemes with equal power allocation.展开更多
The bits and power allocation model of adaptive power-rate mixture for multi-user multi-server power-line communication systems was analyzed with the restrictions of maximal total power,fixed rate for each real time (...The bits and power allocation model of adaptive power-rate mixture for multi-user multi-server power-line communication systems was analyzed with the restrictions of maximal total power,fixed rate for each real time (RT) user,minimal rate for each non-real time (NRT) user,maximal bits and power for each subcarrier in each orthogonal frequency division multiplexing (OFDM) symbol. An algorithm of resource dynamic allocation in the first OFDM symbol of each frame and resource optimal adjustment in the latter OFDM symbol of each frame was proposed. In the first OFDM symbol of every frame,resource is firstly assigned for RT users so as to minimize their total used power until satisfying their fixed rates; secondly the remainder resource of power and subcarriers are assigned for NRT users so as to minimize their total used power until satisfying their minimal rates also; lastly the remainder resource is again assigned for NRT users according to the proportional fairness strategy so as to maximize their total assigning rate. In the latter OFDM symbol of each frame,bits are swapped and power is adjusted for every user based on the resource allocation results of anterior OFDM symbol. The algorithm is tested in the typical power-line channel scenarios and the simulation results indicate that the proposed algorithm has better performances than the classical multi-user resource allocation algorithms and it realizes the multiple aims of multi-user multi-server resource allocation for power-line communication systems.展开更多
基金Supported by the National Natural Science Foundation for Distinguished Young Scholar ( No. 61001115 ) and the Beijing Municipal Natural Science Foundation ( No. 4102044).
文摘This paper investigates the relay selection and resource allocation problem in multiuser orthogonal frequency division multiplexing (OFDM) based cooperative cellular networks, in which user nodes could relay information for each other using the decode-and-forward (DF) protocol to achieve spatial diversity gain. Specifically, the paper proposes an optimal joint relay selection and resource allocation (0RSRA) algorithm whose objective is to maximize system total achievable data rate with the constraints of each user' s individual quality of service (QoS) requirement and transmission power. Due to being a mixed binary integer programming (MBIP) problem, a novel two-level Lagrangian dual-primal decomposition and subgradient projection approach is proposed to not only select the appropriate cooperative relay nodes, but also allocate subcarries and power optimally. Simulation re- suits demonstrate that our proposed scheme can efficiently enhance overall system data rate and guarantee each user' s QoS requirement. Meanwhile, the fairness among users can be improved dramatically.
基金supported in part by the National Natural Science Foundation of China(61471115)in part by the 2016 Science and Technology Joint Research and Innovation Foundation of Jiangsu Province(BY2016076-13)
文摘An energy effi cient resource allocation scheme in timesharing multiuser system with a hybrid energy harvesting transmitter is studied in this paper. Specially, the operation energy of system is supplied by constant energy and energy harvesting, which harvests energy from external environment. Our goal is to maximize the energy effi ciency of timesharing multiuser systems by considering jointly allocation of transmission time and power control in an off-line manner. The original nonconvex objective function is transformed into convex optimization problem via the fractional programming approach. Then, we solve the convex problem by Lagrange dual decomposition method. Simulation results show that the proposed energy efficient resource allocation scheme has a better performance than the scheme which decomposes optimization problem into two parts(power allocation, time allocation) to solve iteratively.
基金supported in part by the National Nature Science Foundation of China under Grant 61372117the 863 project under grant No.2014AA01A701the National Key Technology Support Program under grant No.2012BAH41F03
文摘The pursuit of high data rate and assurance of quality of experience(QoE) for end users represent the main goals of future wireless communication systems.By introducing MOS(Mean Opinion Score) based assessment models for different types of applications,this paper proposed novel QoE-oriented radio resource allocation(RRA) algorithms for multiuser-multiservice femtocell networks.An optimal QoE-oriented RRA strategy is first analyzed using time-sharing method which is applicable to best effort applications.RRA algorithms based on the cross-layer architecture are then proposed for all types of applications by considering parameters extracted from different layers of networking protocols.In the proposed algorithms,a priority mechanism is employed to ensure fairness.Simulation results show that the proposed algorithms can significantly improve the overall perceived quality from the users' perspective in comparison with traditional Quality of Service(QoS)oriented algorithms.
基金Supported by the National High Technology Research and Development Programme of China (No. 2009AA01Z247, No. 2007AA01Z265), and the National Natural Science Foundation of China (No. 60972076)
文摘In this paper, we investigate a resource allocation issue in OFDMA-based decode-and-forward cooperative multiuser networks and propose joint subcarrier and power allocation schemes. The optimal solution of this combinable allocation shows high computational complexity, so we allocate subcarriers and power separately. At firstly, we distribute subcarriers to relays and users under the assumption of equal power distribution. Here, we propose an equal capacity increment (ECI) allocation strategy to achieve tradeoff between total throughput and fairness. To further improve the system performance, we introduce threshold into ECI strategy, named ECI strategy with threshold (ECI-T), where subcarriers with bad performance are prevented from transmitting. Subsequently, a water-filling method is adopted to distribute the power to cooperative links in order to fully utilize the limited power. Simulation results show that system performance of the proposed schemes is significantly enhanced compared with an existing resource allocation scheme. Besides, the resource allocation schemes with the water- filling method notably outperform schemes with equal power allocation.
基金Projects(51007021, 60402004) supported by the National Natural Science Foundation of China
文摘The bits and power allocation model of adaptive power-rate mixture for multi-user multi-server power-line communication systems was analyzed with the restrictions of maximal total power,fixed rate for each real time (RT) user,minimal rate for each non-real time (NRT) user,maximal bits and power for each subcarrier in each orthogonal frequency division multiplexing (OFDM) symbol. An algorithm of resource dynamic allocation in the first OFDM symbol of each frame and resource optimal adjustment in the latter OFDM symbol of each frame was proposed. In the first OFDM symbol of every frame,resource is firstly assigned for RT users so as to minimize their total used power until satisfying their fixed rates; secondly the remainder resource of power and subcarriers are assigned for NRT users so as to minimize their total used power until satisfying their minimal rates also; lastly the remainder resource is again assigned for NRT users according to the proportional fairness strategy so as to maximize their total assigning rate. In the latter OFDM symbol of each frame,bits are swapped and power is adjusted for every user based on the resource allocation results of anterior OFDM symbol. The algorithm is tested in the typical power-line channel scenarios and the simulation results indicate that the proposed algorithm has better performances than the classical multi-user resource allocation algorithms and it realizes the multiple aims of multi-user multi-server resource allocation for power-line communication systems.