This research describes an integrated multi-channel high accuracy current control LED (light emitting diode) driver with low dropout regulator implemented in a 0.35μm TSMC 2P4M CMOS process. With the new trend of b...This research describes an integrated multi-channel high accuracy current control LED (light emitting diode) driver with low dropout regulator implemented in a 0.35μm TSMC 2P4M CMOS process. With the new trend of backlighting applications for mobile electronics and portable devices requiring a smaller size, lower cost, lesser noise and accurate current control LED driver, it came up with the idea of integrating more than one design features within a single chip. The analysis of using a capacitor-less low dropout regulator to power the constant current source has been explored, with the implementation of wide range battery voltage of 3 V to 5 V. Possible load current variations were introduced and verified to output a fixed voltage of 2.8 V. A regulated cascode current mirror structure forms the multi-channel configuration string of LED's; the design ensures a current matching of less than 1% error and achieves a high accuracy current control of less than 1% error, regardless of the LED's forward voltage variation. Moreover, for high end portable device with multimedia applications, dimming frequency can be set to 10 MHz. In addition, a switching output is a better approach for managing LED's contrast and brightness adjustment as well as maximizing power consumption, ensuring longer life for driving string of LEDs.展开更多
Cuprous sulfide (Cu2S) is a direct band-gap p-type semiconductor with excellent ionic/electronic hybrid conductivity. Alt- hough Cu/Cu2S/sulfide or polysulfide system is adopted as counter electrode of quantum-dots-...Cuprous sulfide (Cu2S) is a direct band-gap p-type semiconductor with excellent ionic/electronic hybrid conductivity. Alt- hough Cu/Cu2S/sulfide or polysulfide system is adopted as counter electrode of quantum-dots-sensitized solar cells (QDSSC), the electrode process is seldom reported. Here, the electrochemical growth of Cu2S film on a copper (Cu) surface, the redox behaviors of sulfide and polysulfide, and the all-in-solid charge-transfer properties of Cu2S film are investigated. It is clarified that the copper electrode simultaneously undergoes an activated process, a membrane growth process, and a redox phase transformation process. The solid charge-transfer capability of CuzS is quantified with a high exchange-current density of 2.27 A/cm2, which elucidates that the Cu/CuzS electrode is a qualified material for counter electrodes of QDSSC. These results aid understanding of the physicochemical mechanism of QDSSC with a polysulfide electrolyte and Cu/Cu2S counter electrode.展开更多
文摘This research describes an integrated multi-channel high accuracy current control LED (light emitting diode) driver with low dropout regulator implemented in a 0.35μm TSMC 2P4M CMOS process. With the new trend of backlighting applications for mobile electronics and portable devices requiring a smaller size, lower cost, lesser noise and accurate current control LED driver, it came up with the idea of integrating more than one design features within a single chip. The analysis of using a capacitor-less low dropout regulator to power the constant current source has been explored, with the implementation of wide range battery voltage of 3 V to 5 V. Possible load current variations were introduced and verified to output a fixed voltage of 2.8 V. A regulated cascode current mirror structure forms the multi-channel configuration string of LED's; the design ensures a current matching of less than 1% error and achieves a high accuracy current control of less than 1% error, regardless of the LED's forward voltage variation. Moreover, for high end portable device with multimedia applications, dimming frequency can be set to 10 MHz. In addition, a switching output is a better approach for managing LED's contrast and brightness adjustment as well as maximizing power consumption, ensuring longer life for driving string of LEDs.
基金supported by the National Basic Research Program of China(2012CB932902,2011CB933700)the National Natural Science Foundation of China(21321062,21061120456)+1 种基金the Natural Science Foundation of Fujian Province of China(2012J06004)the Program for New Century Excellent Talents in University(NCET-12-0318)
文摘Cuprous sulfide (Cu2S) is a direct band-gap p-type semiconductor with excellent ionic/electronic hybrid conductivity. Alt- hough Cu/Cu2S/sulfide or polysulfide system is adopted as counter electrode of quantum-dots-sensitized solar cells (QDSSC), the electrode process is seldom reported. Here, the electrochemical growth of Cu2S film on a copper (Cu) surface, the redox behaviors of sulfide and polysulfide, and the all-in-solid charge-transfer properties of Cu2S film are investigated. It is clarified that the copper electrode simultaneously undergoes an activated process, a membrane growth process, and a redox phase transformation process. The solid charge-transfer capability of CuzS is quantified with a high exchange-current density of 2.27 A/cm2, which elucidates that the Cu/CuzS electrode is a qualified material for counter electrodes of QDSSC. These results aid understanding of the physicochemical mechanism of QDSSC with a polysulfide electrolyte and Cu/Cu2S counter electrode.