In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv...In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.展开更多
To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based gen...To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based genetic algorithm was applied to optimizing the head stamping forming process. In the proposed optimal model, fracture, wrinkle and thickness varying are a function of several factors, such as fillet radius, draw-bead position, blank size and blank-holding force. Hence, it is necessary to investigate the relationship between the objective functions and the variables in order to make objective functions varying minimized simultaneously. Firstly, the central composite experimental(CCD) with four factors and five levels was applied, and the experimental data based on the central composite experimental were acquired. Then, the response surface model(RSM) was set up and the results of the analysis of variance(ANOVA) show that it is reliable to predict the fracture, wrinkle and thickness varying functions by the response surface model. Finally, a Pareto-based genetic algorithm was used to find out a set of Pareto front, which makes fracture, wrinkle and thickness varying minimized integrally. A head stamping case indicates that the present method has higher precision and practicability compared with the "trial and error" procedure.展开更多
Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a se...Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a semi-empirical structured into two series ideal continuously stirred tank reactor (CSTR) models. The optimal objectives include maximizing the yield or inlet rate and minimizing the concentration of 4-carboxy-benzaldhyde, which is the main undesirable intermediate product in the reaction process. The multi-objective optimization algorithra applied in this study is non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). The performance of NSGA-Ⅱ is further illustrated by application to the title process.展开更多
By avoiding or reducing the production of waste, waste minimization is an effective approach to solve the pollution problem in chemical industry. Process integration supported by multi-objective optimization provides ...By avoiding or reducing the production of waste, waste minimization is an effective approach to solve the pollution problem in chemical industry. Process integration supported by multi-objective optimization provides a framework for process design or process retrofit by simultaneously optimizing on the aspects of environment and economics. Multi-objective genetic algorithm is applied in this area as the solution approach for the multi-objective optimization problem.展开更多
Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved ...Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved in polynomial time. The present algorithms focused mainly on how to obtain a precisely pareto optimal solution for MSPP resulting in a long time to obtain multiple pareto optimal solutions with them. In order to obtain a set of satisfied solutions for MSPP in reasonable time to meet the demand of a decision maker, a genetic algo- rithm MSPP-GA is presented to solve the MSPP with typically competing objectives, cost and time, in this pa- per. The encoding of the solution and the operators such as crossover, mutation and selection are developed. The algorithm introduced pareto domination tournament and sharing based selection operator, which can not only directly search the pareto optimal frontier but also maintain the diversity of populations in the process of evolutionary computation. Experimental results show that MSPP-GA can obtain most efficient solutions distributed all along the pareto frontier in less time than an exact algorithm. The algorithm proposed in this paper provides a new and effective method of how to obtain the set of pareto optimal solutions for other multiple objective optimization problems in a short time.展开更多
A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the nov...A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the novel AFS system and the vehicle three-degree of freedom system,the concept and quantitative formulas of the novel AFS system steering performance were proposed.The steering road feel and steering portability were set as the optimizing targets with the steering stability and steering portability as the constraint conditions.According to the features of constrained optimization of multi-variable function,a multi-variable genetic algorithm for the system parameter optimization was designed.The simulation results show that based on parametric optimization of the multi-objective genetic algorithm,the novel AFS system can improve the steering road feel,steering portability and steering stability,thus the optimization method can provide a theoretical basis for the design and optimization of the novel AFS system.展开更多
The parameters affecting road surface cleaning using waterjets were researched and a fuzzy neural network method of calculating cleaning rate was provided. A genetic algorithm was used to configure the cleaning parame...The parameters affecting road surface cleaning using waterjets were researched and a fuzzy neural network method of calculating cleaning rate was provided. A genetic algorithm was used to configure the cleaning parameters of pressure, standoff distance, traverse rate and angle of nozzles for the optimization of the cleaning effectiveness, efficiency, energy and water con-sumption, and a multi-objective optimization model was established. After calculation, the optimized results and the trend of variation of cleaning effectiveness, efficiency, energy and water consumption in different weighting factors were analyzed.展开更多
A multi-objective optimization model considering both reliability and maintenance cost is proposed to solve the contradiction between reliability and maintenance cost in high-speed railway catenary system maintenance ...A multi-objective optimization model considering both reliability and maintenance cost is proposed to solve the contradiction between reliability and maintenance cost in high-speed railway catenary system maintenance activities.The non-dominated sorting genetic algorithm 2(NSGA2)is applied to multi-objective optimization,and the optimization result is a set of Pareto solutions.Firstly,multistate failure mode analysis is conducted for the main devices leading to the failure of catenary,and then the reliability and failure mode of the whole catenary system is analyzed.The mathematical relationship between system reliability and maintenance cost is derived considering the existing catenary preventive maintenance mode to improve the reliability of the system.Secondly,an improved NSGA2(INSGA2)is proposed,which strengths population diversity by improving selection operator,and introduces local search strategy to ensure that population distribution is more uniform.The comparison results of the two algorithms before and after improvement on the zero-ductility transition(ZDT)series functions show that the population diversity is better and the solution is more uniform using INSGA2.Finally,the INSGA2 is applied to multi-objective optimization of system reliability and maintenance cost in different maintenance periods.The decision-makers can choose the reasonable solutions as the maintenance plans in the optimization results by weighing the relationship between the system reliability and the maintenance cost.The selected maintenance plans can ensure the lowest maintenance cost while the system reliability is as high as possible.展开更多
In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters ...In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%.展开更多
To get the satisfying performance of a PID controller, this paper presents a novel Pareto-based multi-objective genetic algorithm (MOGA), which can be used to find the appropriate setting of the PID controller by anal...To get the satisfying performance of a PID controller, this paper presents a novel Pareto-based multi-objective genetic algorithm (MOGA), which can be used to find the appropriate setting of the PID controller by analyzing the pareto optimal surfaces. Rated settings of the controller by two criteria, the error between output and reference signals and control moves, are listed on the pareto surface. Appropriate setting can be chosen under a balance between two criteria for different control purposes. A controller tuning problem for a plant with high order and time delay is chosen as an example. Simulation results show that the method of MOGA is more efficient compared with traditional tuning methods.展开更多
To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algor...To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity.展开更多
Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a ki...Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system.展开更多
The technology of production planning and scheduling is one of the critical technologies that decide whether the automated manufacturing systems can get the expected economy. Job shop scheduling belongs to the special...The technology of production planning and scheduling is one of the critical technologies that decide whether the automated manufacturing systems can get the expected economy. Job shop scheduling belongs to the special class of NP-hard problems. Most of the algorithms used to optimize this class of problems have an exponential time; that is, the computation time increases exponentially with problem size. In scheduling study, makespan is often considered as the main objective. In this paper, makespan, the due date request of the key jobs, the availability of the key machine, the average wait-time of the jobs, and the similarities between the jobs and so on are taken into account based on the application of mechanical engineering. The job shop scheduling problem with multi-objectives is analyzed and studied by using genetic algorithms based on the mechanics of genetics and natural selection. In this research, the tactics of the coding and decoding and the design of the genetic operators, along with the description of the mathematic model of the multi-objective functions, are presented. Finally an illu-strative example is given to testify the validity of this algorithm.展开更多
A microbial fuel cell(MFC)is a novel promising technology for simultaneous renewable electricity generation and wastewater treatment.Three non-comparable objectives,i.e.power density,attainable current density and was...A microbial fuel cell(MFC)is a novel promising technology for simultaneous renewable electricity generation and wastewater treatment.Three non-comparable objectives,i.e.power density,attainable current density and waste removal ratio,are often conflicting.A thorough understanding of the relationship among these three conflicting objectives can be greatly helpful to assist in optimal operation of MFC system.In this study,a multiobjective genetic algorithm is used to simultaneously maximizing power density,attainable current density and waste removal ratio based on a mathematical model for an acetate two-chamber MFC.Moreover,the level diagrams method is utilized to aid in graphical visualization of Pareto front and decision making.Three biobjective optimization problems and one three-objective optimization problem are thoroughly investigated.The obtained Pareto fronts illustrate the complex relationships among these three objectives,which is helpful for final decision support.Therefore,the integrated methodology of a multi-objective genetic algorithm and a graphical visualization technique provides a promising tool for the optimal operation of MFCs by simultaneously considering multiple conflicting objectives.展开更多
In this work, the extractive distillation with heat integration process is extended to separate the pressure-insensitive benzene-cyclohexane azeotrope by using furfural as the entrainer. The optimal design of extracti...In this work, the extractive distillation with heat integration process is extended to separate the pressure-insensitive benzene-cyclohexane azeotrope by using furfural as the entrainer. The optimal design of extractive distillation process is established to achieve minimum energy requirement using the multi-objective genetic algorithm, and the results show that energy saving for this heat integration process is 15.7%. Finally, the control design is performed to investigate the system's dynamic performance, and three control structures are studied. The pressure-compensated temperature control scheme is proposed based on the first two control structures, and the dynamic responses reveal that the feed disturbances in both flow rate and benzene composition can be mitigated well.展开更多
In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Mo...In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method.展开更多
Recently, the single-shaft series-parallel powertrain of Plug-in Hybrid Electric Bus (PHEB) has become one of the most popu- lar powertrains due to its alterable operating modes, excellent fuel economy and strong ad...Recently, the single-shaft series-parallel powertrain of Plug-in Hybrid Electric Bus (PHEB) has become one of the most popu- lar powertrains due to its alterable operating modes, excellent fuel economy and strong adaptability for driving cycles. Never- theless, for configuring the PHEB with single-shaft series-parallel powertrain in the development stage, it still faces greater challenge than other configurations when choosing and matching the main component parameters. Motivated by this issue, a comprehensive multi-objectives optimization strategy based on Genetic Algorithm (GA) is developed for the PHEB with the typical powertrain. First, considering repeatability and regularity of bus route, the methods of off-line data processing and mathematical statistics are adopted, to obtain a representative driving cycle, which could well reflect the general characteristic of the real-world bus route. Then, the economical optimization objective is defined, which is consist of manufacturing costs of the key components and energy consumption, and combined with the dynamical optimization objective, a multi-objective op- timization function is put forward. Meanwhile, GA algorithm is used to optimize the parameters, for the optimal components combination of the novel series-parallel powertrain. Finally, a comparison with the prototype is carried out to verify the per- formance of the optimized powertrain along driving cycles. Simulation results indicate that the parameters of powertrain com- ponents obtained by the proposed comprehensive multi-objectives optimization strategy might get better fuel economy, meanwhile ensure the dynamic performance of PHEB. In contrast to the original, the costs declined by 18%. Hence, the strat- egy would provide a theoretical guidance on parameter selection for PHEB manufacturers.展开更多
The success of compliant mechanism design by structural topology optimization approach depends,to a large extent,on its structural geometry representation scheme.In this work,a novel representation scheme based on pai...The success of compliant mechanism design by structural topology optimization approach depends,to a large extent,on its structural geometry representation scheme.In this work,a novel representation scheme based on pairs of curves is presented.In the representation,the structure is characterized by a set of input/output(I/O) regions.While it is still unknown how the rest of the design space will be occupied by the structure,the I/O regions must exist somewhere because any structure must have parts which interact with its surroundings by way of at least one loading region,one support region,and one output region.For a valid structural design,pairs of Bezier curves are used to connect I/O regions in order to form one single connected load-bearing structure.The boundary is explicitly described,so the need for smoothening of the blurred and jagged edges can be avoided by developing such a representation scheme to directly generate smooth boundary structures.With the scheme,shape and topology can be optimized simultaneously,and the obtained topology solutions have no check-board phenomena nor intermediate zones.A multi-objective genetic algorithm is then applied to couple with the representation scheme for defining and encoding the structural geometry in the form of graph.The solution framework is integrated with a nonlinear fixed grid finite element method(FG-FEM) code for large-displacement analyses of the compliant structures.Simulation results from a displacement inverter indicated that the proposed representation scheme is appropriate.展开更多
A novel approach,which can be used for dynamic characteristics analysis of machine tools based on unit structure(US),is reported in this paper.The concepts of unit structures for design of machine tools are defined.In...A novel approach,which can be used for dynamic characteristics analysis of machine tools based on unit structure(US),is reported in this paper.The concepts of unit structures for design of machine tools are defined.In order to satisfy the dynamic characteristics requirement of high natural frequency and light-weight of US,a design method of multi-disciplinary optimization of NSGA-II about unit structures driven by natural frequency and mass is developed.Through analyzing the unit structures,key factors affecting the natural frequency and mass are extracted,and the mathematical models of natural frequency and mass about unit structures are also established by using central composite design and response surface model.The goal of high natural frequency and light-weight is reached by using the multi-objective genetic algorithms.The Pareto optimal set is also obtained.The dynamic behavior of US is investigated by the experimental modal analysis.To show the efficiency of the proposed novel method,the example of YKW51250 gear shaping machine bed is used.Through optimization of NSGA-II about US of YKW51250 machine bed,the natural frequency of YKW51250 gear shaping machine bed is increased by 30.4%and its mass decreased by 5.2%comparing with the original design.By studying the dynamic characteristics of the simplified machine tools bed,useful laws are obtained,and these laws can be used in primary design of NC machine tools structures.The optimal method based on US can be also applied to the dynamic optimal design of machine tools and other similar equipments.展开更多
文摘In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.
基金Project(2012ZX04010-081) supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China
文摘To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based genetic algorithm was applied to optimizing the head stamping forming process. In the proposed optimal model, fracture, wrinkle and thickness varying are a function of several factors, such as fillet radius, draw-bead position, blank size and blank-holding force. Hence, it is necessary to investigate the relationship between the objective functions and the variables in order to make objective functions varying minimized simultaneously. Firstly, the central composite experimental(CCD) with four factors and five levels was applied, and the experimental data based on the central composite experimental were acquired. Then, the response surface model(RSM) was set up and the results of the analysis of variance(ANOVA) show that it is reliable to predict the fracture, wrinkle and thickness varying functions by the response surface model. Finally, a Pareto-based genetic algorithm was used to find out a set of Pareto front, which makes fracture, wrinkle and thickness varying minimized integrally. A head stamping case indicates that the present method has higher precision and practicability compared with the "trial and error" procedure.
基金National Key Technologies Research and Development Program in the 10th Five-year Phan(No.2001BA204B01)National Outstanding Youth Science Foundation of China(No.60025308)
文摘Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a semi-empirical structured into two series ideal continuously stirred tank reactor (CSTR) models. The optimal objectives include maximizing the yield or inlet rate and minimizing the concentration of 4-carboxy-benzaldhyde, which is the main undesirable intermediate product in the reaction process. The multi-objective optimization algorithra applied in this study is non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). The performance of NSGA-Ⅱ is further illustrated by application to the title process.
文摘By avoiding or reducing the production of waste, waste minimization is an effective approach to solve the pollution problem in chemical industry. Process integration supported by multi-objective optimization provides a framework for process design or process retrofit by simultaneously optimizing on the aspects of environment and economics. Multi-objective genetic algorithm is applied in this area as the solution approach for the multi-objective optimization problem.
文摘Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved in polynomial time. The present algorithms focused mainly on how to obtain a precisely pareto optimal solution for MSPP resulting in a long time to obtain multiple pareto optimal solutions with them. In order to obtain a set of satisfied solutions for MSPP in reasonable time to meet the demand of a decision maker, a genetic algo- rithm MSPP-GA is presented to solve the MSPP with typically competing objectives, cost and time, in this pa- per. The encoding of the solution and the operators such as crossover, mutation and selection are developed. The algorithm introduced pareto domination tournament and sharing based selection operator, which can not only directly search the pareto optimal frontier but also maintain the diversity of populations in the process of evolutionary computation. Experimental results show that MSPP-GA can obtain most efficient solutions distributed all along the pareto frontier in less time than an exact algorithm. The algorithm proposed in this paper provides a new and effective method of how to obtain the set of pareto optimal solutions for other multiple objective optimization problems in a short time.
基金Project(51005115) supported by the National Natural Science Foundation of ChinaProject(KF11201) supported by the Science Fund of State Key Laboratory of Automotive Safety and Energy,ChinaProject(201105) supported by the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission in Chongqing University,China
文摘A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the novel AFS system and the vehicle three-degree of freedom system,the concept and quantitative formulas of the novel AFS system steering performance were proposed.The steering road feel and steering portability were set as the optimizing targets with the steering stability and steering portability as the constraint conditions.According to the features of constrained optimization of multi-variable function,a multi-variable genetic algorithm for the system parameter optimization was designed.The simulation results show that based on parametric optimization of the multi-objective genetic algorithm,the novel AFS system can improve the steering road feel,steering portability and steering stability,thus the optimization method can provide a theoretical basis for the design and optimization of the novel AFS system.
基金Project supported by the Foundation of Shanghai Economic Com-mission, China
文摘The parameters affecting road surface cleaning using waterjets were researched and a fuzzy neural network method of calculating cleaning rate was provided. A genetic algorithm was used to configure the cleaning parameters of pressure, standoff distance, traverse rate and angle of nozzles for the optimization of the cleaning effectiveness, efficiency, energy and water con-sumption, and a multi-objective optimization model was established. After calculation, the optimized results and the trend of variation of cleaning effectiveness, efficiency, energy and water consumption in different weighting factors were analyzed.
文摘A multi-objective optimization model considering both reliability and maintenance cost is proposed to solve the contradiction between reliability and maintenance cost in high-speed railway catenary system maintenance activities.The non-dominated sorting genetic algorithm 2(NSGA2)is applied to multi-objective optimization,and the optimization result is a set of Pareto solutions.Firstly,multistate failure mode analysis is conducted for the main devices leading to the failure of catenary,and then the reliability and failure mode of the whole catenary system is analyzed.The mathematical relationship between system reliability and maintenance cost is derived considering the existing catenary preventive maintenance mode to improve the reliability of the system.Secondly,an improved NSGA2(INSGA2)is proposed,which strengths population diversity by improving selection operator,and introduces local search strategy to ensure that population distribution is more uniform.The comparison results of the two algorithms before and after improvement on the zero-ductility transition(ZDT)series functions show that the population diversity is better and the solution is more uniform using INSGA2.Finally,the INSGA2 is applied to multi-objective optimization of system reliability and maintenance cost in different maintenance periods.The decision-makers can choose the reasonable solutions as the maintenance plans in the optimization results by weighing the relationship between the system reliability and the maintenance cost.The selected maintenance plans can ensure the lowest maintenance cost while the system reliability is as high as possible.
基金Project(51074180) supported by the National Natural Science Foundation of ChinaProject(2012AA041801) supported by the National High Technology Research and Development Program of China+2 种基金Project(2007CB714002) supported by the National Basic Research Program of ChinaProject(2013GK3003) supported by the Technology Support Plan of Hunan Province,ChinaProject(2010FJ1002) supported by Hunan Science and Technology Major Program,China
文摘In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 60504033)
文摘To get the satisfying performance of a PID controller, this paper presents a novel Pareto-based multi-objective genetic algorithm (MOGA), which can be used to find the appropriate setting of the PID controller by analyzing the pareto optimal surfaces. Rated settings of the controller by two criteria, the error between output and reference signals and control moves, are listed on the pareto surface. Appropriate setting can be chosen under a balance between two criteria for different control purposes. A controller tuning problem for a plant with high order and time delay is chosen as an example. Simulation results show that the method of MOGA is more efficient compared with traditional tuning methods.
基金Project(ADLT 930-809R)supported by the Alabama Department of Transportation,USA
文摘To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity.
基金Project(61273138)supported by the National Natural Science Foundation of ChinaProject(14JCZDJC39300)supported by the Key Fund of Tianjin,China
文摘Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system.
基金Supported by National Information Industry Department (01XK310020)Shanghai Natural Science Foundation (No. 01ZF14004)
文摘The technology of production planning and scheduling is one of the critical technologies that decide whether the automated manufacturing systems can get the expected economy. Job shop scheduling belongs to the special class of NP-hard problems. Most of the algorithms used to optimize this class of problems have an exponential time; that is, the computation time increases exponentially with problem size. In scheduling study, makespan is often considered as the main objective. In this paper, makespan, the due date request of the key jobs, the availability of the key machine, the average wait-time of the jobs, and the similarities between the jobs and so on are taken into account based on the application of mechanical engineering. The job shop scheduling problem with multi-objectives is analyzed and studied by using genetic algorithms based on the mechanics of genetics and natural selection. In this research, the tactics of the coding and decoding and the design of the genetic operators, along with the description of the mathematic model of the multi-objective functions, are presented. Finally an illu-strative example is given to testify the validity of this algorithm.
基金Supported by the National Natural Science Foundation of China(21576163)the Major State Basic Research Development Program of China(2014CB239703)+1 种基金the Science and Technology Commission of Shanghai Municipality(14DZ2250800)the Project-sponsored by SRF for ROCS,SEM
文摘A microbial fuel cell(MFC)is a novel promising technology for simultaneous renewable electricity generation and wastewater treatment.Three non-comparable objectives,i.e.power density,attainable current density and waste removal ratio,are often conflicting.A thorough understanding of the relationship among these three conflicting objectives can be greatly helpful to assist in optimal operation of MFC system.In this study,a multiobjective genetic algorithm is used to simultaneously maximizing power density,attainable current density and waste removal ratio based on a mathematical model for an acetate two-chamber MFC.Moreover,the level diagrams method is utilized to aid in graphical visualization of Pareto front and decision making.Three biobjective optimization problems and one three-objective optimization problem are thoroughly investigated.The obtained Pareto fronts illustrate the complex relationships among these three objectives,which is helpful for final decision support.Therefore,the integrated methodology of a multi-objective genetic algorithm and a graphical visualization technique provides a promising tool for the optimal operation of MFCs by simultaneously considering multiple conflicting objectives.
基金supported by the National Natural Science Foundation of China(grant number 21476261)the Key Research and Development Plan Project of Shandong Province(grant number 2015GGX107004)
文摘In this work, the extractive distillation with heat integration process is extended to separate the pressure-insensitive benzene-cyclohexane azeotrope by using furfural as the entrainer. The optimal design of extractive distillation process is established to achieve minimum energy requirement using the multi-objective genetic algorithm, and the results show that energy saving for this heat integration process is 15.7%. Finally, the control design is performed to investigate the system's dynamic performance, and three control structures are studied. The pressure-compensated temperature control scheme is proposed based on the first two control structures, and the dynamic responses reveal that the feed disturbances in both flow rate and benzene composition can be mitigated well.
文摘In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method.
基金supported by the National Key Science and Technology Projects(Grant No.2014ZX04002041)
文摘Recently, the single-shaft series-parallel powertrain of Plug-in Hybrid Electric Bus (PHEB) has become one of the most popu- lar powertrains due to its alterable operating modes, excellent fuel economy and strong adaptability for driving cycles. Never- theless, for configuring the PHEB with single-shaft series-parallel powertrain in the development stage, it still faces greater challenge than other configurations when choosing and matching the main component parameters. Motivated by this issue, a comprehensive multi-objectives optimization strategy based on Genetic Algorithm (GA) is developed for the PHEB with the typical powertrain. First, considering repeatability and regularity of bus route, the methods of off-line data processing and mathematical statistics are adopted, to obtain a representative driving cycle, which could well reflect the general characteristic of the real-world bus route. Then, the economical optimization objective is defined, which is consist of manufacturing costs of the key components and energy consumption, and combined with the dynamical optimization objective, a multi-objective op- timization function is put forward. Meanwhile, GA algorithm is used to optimize the parameters, for the optimal components combination of the novel series-parallel powertrain. Finally, a comparison with the prototype is carried out to verify the per- formance of the optimized powertrain along driving cycles. Simulation results indicate that the parameters of powertrain com- ponents obtained by the proposed comprehensive multi-objectives optimization strategy might get better fuel economy, meanwhile ensure the dynamic performance of PHEB. In contrast to the original, the costs declined by 18%. Hence, the strat- egy would provide a theoretical guidance on parameter selection for PHEB manufacturers.
基金supported by the State Key Laboratory of Robotics and System (HIT)the National Science Fund for Distinguished Young Scholars(Grant No. 50825504)+1 种基金the United Fund of Natural Science Foundation of China and Guangdong Province (Grant No. U0934004),Project GDUPS(2010)the Fundamental Research Funds for the Central Universities(Grant Nos. 2009220040 and 2012ZP0004)
文摘The success of compliant mechanism design by structural topology optimization approach depends,to a large extent,on its structural geometry representation scheme.In this work,a novel representation scheme based on pairs of curves is presented.In the representation,the structure is characterized by a set of input/output(I/O) regions.While it is still unknown how the rest of the design space will be occupied by the structure,the I/O regions must exist somewhere because any structure must have parts which interact with its surroundings by way of at least one loading region,one support region,and one output region.For a valid structural design,pairs of Bezier curves are used to connect I/O regions in order to form one single connected load-bearing structure.The boundary is explicitly described,so the need for smoothening of the blurred and jagged edges can be avoided by developing such a representation scheme to directly generate smooth boundary structures.With the scheme,shape and topology can be optimized simultaneously,and the obtained topology solutions have no check-board phenomena nor intermediate zones.A multi-objective genetic algorithm is then applied to couple with the representation scheme for defining and encoding the structural geometry in the form of graph.The solution framework is integrated with a nonlinear fixed grid finite element method(FG-FEM) code for large-displacement analyses of the compliant structures.Simulation results from a displacement inverter indicated that the proposed representation scheme is appropriate.
基金partially supported by the Leading Talent Project of Guangdong Province of Chinathe National Key S&T Special Projects of China on CNC machine tools and fundamental manufacturing equipments(Grant No.2010ZX04001-191 and 2011ZX04002-032)
文摘A novel approach,which can be used for dynamic characteristics analysis of machine tools based on unit structure(US),is reported in this paper.The concepts of unit structures for design of machine tools are defined.In order to satisfy the dynamic characteristics requirement of high natural frequency and light-weight of US,a design method of multi-disciplinary optimization of NSGA-II about unit structures driven by natural frequency and mass is developed.Through analyzing the unit structures,key factors affecting the natural frequency and mass are extracted,and the mathematical models of natural frequency and mass about unit structures are also established by using central composite design and response surface model.The goal of high natural frequency and light-weight is reached by using the multi-objective genetic algorithms.The Pareto optimal set is also obtained.The dynamic behavior of US is investigated by the experimental modal analysis.To show the efficiency of the proposed novel method,the example of YKW51250 gear shaping machine bed is used.Through optimization of NSGA-II about US of YKW51250 machine bed,the natural frequency of YKW51250 gear shaping machine bed is increased by 30.4%and its mass decreased by 5.2%comparing with the original design.By studying the dynamic characteristics of the simplified machine tools bed,useful laws are obtained,and these laws can be used in primary design of NC machine tools structures.The optimal method based on US can be also applied to the dynamic optimal design of machine tools and other similar equipments.