期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于综合学习策略的多目标分解粒子群算法 被引量:2
1
作者 陈跃刚 许奕 《微电子学与计算机》 CSCD 北大核心 2018年第10期75-79,共5页
本文提出了一种基于综合学习策略的多目标分解粒子群算法(D-CLMOPSO),该算法采用综合学习策略对多目标问题进行求解,从而避免早熟收敛;通过分解方法更新主导粒子以增强解的分布;采用存档机制以存储优化过程中的非支配解,并采用多项式变... 本文提出了一种基于综合学习策略的多目标分解粒子群算法(D-CLMOPSO),该算法采用综合学习策略对多目标问题进行求解,从而避免早熟收敛;通过分解方法更新主导粒子以增强解的分布;采用存档机制以存储优化过程中的非支配解,并采用多项式变异来避免陷入局部最优.最后将所提出的方法与三种多目标进化算法进行比较,结果表明所提算法在大多数测试问题上具有良好的性能. 展开更多
关键词 多目标 全面学习 粒子群优化 多目标优化分解
下载PDF
旋翼翼型高维多目标气动优化设计 被引量:4
2
作者 宋超 周铸 +1 位作者 李伟斌 罗骁 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第1期95-105,共11页
先进旋翼翼型设计是典型的多设计点、多目标优化问题,常规优化方法已无法满足翼型高维多目标优化设计的要求。基于分解的多目标优化算法(MOEA/D),建立了考虑高低速升阻特性、力矩特性、阻力发散特性等的旋翼翼型高维多目标优化设计方法... 先进旋翼翼型设计是典型的多设计点、多目标优化问题,常规优化方法已无法满足翼型高维多目标优化设计的要求。基于分解的多目标优化算法(MOEA/D),建立了考虑高低速升阻特性、力矩特性、阻力发散特性等的旋翼翼型高维多目标优化设计方法,并采用高精度kriging模型以提高优化设计效率。针对旋翼内段、中段翼型进行了5个设计目标的全局优化设计,采用自组织图映射(SOM)方法对最优Pareto解集进行了聚类分析。典型翼型CFD结果分析表明,中段翼型低速力矩系数幅值减小约50.7%,高速最大升力系数提高约6.5%,最大升阻比提高约7.7%,同时阻力发散特性得到改善,内段翼型同样取得了良好的多目标优化效果。研究表明,MOEA/D算法对高维多目标气动优化设计问题具有很好的适应性,能有效提升旋翼高低速气动性能设计的能力。 展开更多
关键词 旋翼翼型 高维多目标 气动优化 基于分解多目标优化算法(MOEA/D) 自组织图映射(SOM)
下载PDF
超参数自适应的MOEA/D-DE算法在翼型气动隐身优化中的应用 被引量:1
3
作者 王培君 夏露 +1 位作者 栾伟达 陈会强 《航空工程进展》 CSCD 2023年第3期50-60,共11页
MOEA/D-DE算法易于实现,被广泛应用于处理多目标优化问题,但其超参数对算法性能影响较大。基于MOEA/D-DE算法框架,利用Sobol全局灵敏度分析方法对差分进化算子中的交叉控制参数进行改进,使用莱维飞行机制控制比例因子,使算法中的超参数... MOEA/D-DE算法易于实现,被广泛应用于处理多目标优化问题,但其超参数对算法性能影响较大。基于MOEA/D-DE算法框架,利用Sobol全局灵敏度分析方法对差分进化算子中的交叉控制参数进行改进,使用莱维飞行机制控制比例因子,使算法中的超参数拥有自适应能力,得到超参数自适应的MOEA/D-DE算法——MOEA/D-DEAH算法;对MOEA/D-DEAH算法、不同超参数设置的MOEA/D-DE算法和NSGAⅡ算法进行函数测试和翼型气动隐身优化算例对比。结果表明:MOEA/D-DEAH算法性能良好,具有较强的鲁棒性,气动隐身优化效果也比其他算法更好。 展开更多
关键词 多目标优化算法 基于分解多目标优化算法(MOEA/D) 超参数 灵敏度分析 气动隐身优化 差分进化算子
下载PDF
全局替换的自适应权重调整MOEA/D 被引量:1
4
作者 袁田 尹云飞 +1 位作者 黄发良 陈乙雄 《控制理论与应用》 EI CAS CSCD 北大核心 2023年第4期653-662,共10页
当多目标问题的帕累托前沿形状较为复杂时,基于分解的多目标进化算法MOEA/D的解的均匀性将受到很大的影响.MOEA/D利用相邻子问题的信息来优化,但早期因为种群中的个体与子问题的关联是随机分配的,仅在邻居间更新会浪费优秀解的信息,影... 当多目标问题的帕累托前沿形状较为复杂时,基于分解的多目标进化算法MOEA/D的解的均匀性将受到很大的影响.MOEA/D利用相邻子问题的信息来优化,但早期因为种群中的个体与子问题的关联是随机分配的,仅在邻居间更新会浪费优秀解的信息,影响收敛速度.针对这些问题,本文提出一种MOEA/D的改进算法(MOEA/DGUAW).该算法使用种群全局更新的策略,来提高收敛速度;使用自适应调整权重向量的策略来获得更均匀分布的解集.将MOEA/D-GUAW算法与现有的MOEA/D,MOEA/D-AWA,RVEA和NSGA-Ⅲ算法在10个广泛应用的测试问题上进行了实验比较.实验结果表明,提出的算法在大部分问题上,反转世代距离评价指标IGD优于其他算法,收敛速度也快于其他算法. 展开更多
关键词 多目标优化 基于分解的进化多目标优化 全局替换 自适应权重调整
下载PDF
基于分解的多目标布谷鸟搜索算法求解多无人机协同任务分配问题 被引量:3
5
作者 陈亮 卢天鸣 +1 位作者 曹林 白景波 《军事运筹与系统工程》 2021年第2期5-12,共8页
多无人机协同任务分配问题是一个多目标优化问题,将多目标优化问题转化为单目标优化问题的传统方法易造成决策的主观性和片面性。为帮助决策者做出科学决策,提出了一种基于分解的多目标布谷鸟搜索算法用于求解多无人机协同任务分配问题... 多无人机协同任务分配问题是一个多目标优化问题,将多目标优化问题转化为单目标优化问题的传统方法易造成决策的主观性和片面性。为帮助决策者做出科学决策,提出了一种基于分解的多目标布谷鸟搜索算法用于求解多无人机协同任务分配问题。通过对多无人机协同任务分配问题分析,建立了多无人机协同任务分配模型。将布谷鸟搜索算法的两个关键组件转化为多目标优化算法的繁殖算子,并结合一种自适应算子选择策略,构成了多目标布谷鸟搜索算法。设计了一种新的编码方案,将带约束的多目标优化问题转为无约束的多目标优化问题。仿真实验表明,多目标布谷鸟搜索算法能有效求解多无人机协同任务分配问题。 展开更多
关键词 基于分解多目标优化算法 协同任务分配 布谷鸟搜索算法 无人机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部