期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
某超市空调方案的最优化选择
1
作者 李村男 王瑾 唐光表 《制冷与空调(四川)》 2005年第4期57-59,共3页
通过某超市的空调方案的选择,将现代数学最优化方法中的多目标最优化法应用于空调设计中,从而将定性的分析转化为定量的比较,旨在通过一个实例探讨多目标最优化法应用于空调设计的可行性。
关键词 空调方案 多目标最优化法 定量比较
下载PDF
Multi-objective optimization based on Genetic Algorithm for PID controller tuning 被引量:1
2
作者 王国良 阎威武 邵惠鹤 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第1期71-74,共4页
To get the satisfying performance of a PID controller, this paper presents a novel Pareto-based multi-objective genetic algorithm (MOGA), which can be used to find the appropriate setting of the PID controller by anal... To get the satisfying performance of a PID controller, this paper presents a novel Pareto-based multi-objective genetic algorithm (MOGA), which can be used to find the appropriate setting of the PID controller by analyzing the pareto optimal surfaces. Rated settings of the controller by two criteria, the error between output and reference signals and control moves, are listed on the pareto surface. Appropriate setting can be chosen under a balance between two criteria for different control purposes. A controller tuning problem for a plant with high order and time delay is chosen as an example. Simulation results show that the method of MOGA is more efficient compared with traditional tuning methods. 展开更多
关键词 multi-objective optimization genetic algorithms PID controller
下载PDF
A genetic algorithm for the pareto optimal solution set of multi-objective shortest path problem 被引量:2
3
作者 胡仕成 徐晓飞 战德臣 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第6期721-726,共6页
Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved ... Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved in polynomial time. The present algorithms focused mainly on how to obtain a precisely pareto optimal solution for MSPP resulting in a long time to obtain multiple pareto optimal solutions with them. In order to obtain a set of satisfied solutions for MSPP in reasonable time to meet the demand of a decision maker, a genetic algo- rithm MSPP-GA is presented to solve the MSPP with typically competing objectives, cost and time, in this pa- per. The encoding of the solution and the operators such as crossover, mutation and selection are developed. The algorithm introduced pareto domination tournament and sharing based selection operator, which can not only directly search the pareto optimal frontier but also maintain the diversity of populations in the process of evolutionary computation. Experimental results show that MSPP-GA can obtain most efficient solutions distributed all along the pareto frontier in less time than an exact algorithm. The algorithm proposed in this paper provides a new and effective method of how to obtain the set of pareto optimal solutions for other multiple objective optimization problems in a short time. 展开更多
关键词 shortest path multi-objective optimization tournament selection pareto optimum genetic algorithm
下载PDF
Spectroscopic Multicomponent Analysis Using Multi-objective Optimization for Variable Selection 被引量:1
4
作者 Anderson da Silva Soares Telma Woerle de Lima +3 位作者 Daniel Vitor de LuPcena Rogerio Lopes Salvini GustavoTeodoro Laureano Clarimar Jose Coelho 《Computer Technology and Application》 2013年第9期466-475,共10页
The multiple determination tasks of chemical properties are a classical problem in analytical chemistry. The major problem is concerned in to find the best subset of variables that better represents the compounds. The... The multiple determination tasks of chemical properties are a classical problem in analytical chemistry. The major problem is concerned in to find the best subset of variables that better represents the compounds. These variables are obtained by a spectrophotometer device. This device measures hundreds of correlated variables related with physicocbemical properties and that can be used to estimate the component of interest. The problem is the selection of a subset of informative and uncorrelated variables that help the minimization of prediction error. Classical algorithms select a subset of variables for each compound considered. In this work we propose the use of the SPEA-II (strength Pareto evolutionary algorithm II). We would like to show that the variable selection algorithm can selected just one subset used for multiple determinations using multiple linear regressions. For the case study is used wheat data obtained by NIR (near-infrared spectroscopy) spectrometry where the objective is the determination of a variable subgroup with information about E protein content (%), test weight (Kg/HI), WKT (wheat kernel texture) (%) and farinograph water absorption (%). The results of traditional techniques of multivariate calibration as the SPA (successive projections algorithm), PLS (partial least square) and mono-objective genetic algorithm are presents for comparisons. For NIR spectral analysis of protein concentration on wheat, the number of variables selected from 775 spectral variables was reduced for just 10 in the SPEA-II algorithm. The prediction error decreased from 0.2 in the classical methods to 0.09 in proposed approach, a reduction of 37%. The model using variables selected by SPEA-II had better prediction performance than classical algorithms and full-spectrum partial least-squares. 展开更多
关键词 Multi-objective algorithms variable selection linear regression.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部