针对导弹打击地面目标时的瞄准点优选问题,提出了一种利用改进灰狼优化算法(improved grey wolf op timization,IGWO)选取最优瞄准点的瞄准点选择方法。该算法基于维度学习的狩猎搜索策略(dimension learning-based hunting,DLH),为每...针对导弹打击地面目标时的瞄准点优选问题,提出了一种利用改进灰狼优化算法(improved grey wolf op timization,IGWO)选取最优瞄准点的瞄准点选择方法。该算法基于维度学习的狩猎搜索策略(dimension learning-based hunting,DLH),为每个瞄准点构建相邻的瞄准点集合,集合中的瞄准点可以互相共享信息,增强局部搜索和全局搜索之间的平衡,并保持多样性。在仿真实验中,将毁伤评估模型的评估函数作为瞄准点选取好坏的评估函数,并且设计导弹打击地面目标的实例对瞄准点选择方法进行验证,实验结果表明,该方法求得的瞄准点具有较高的可信度,为火力筹划中瞄准点的寻优提供了新方法。展开更多
针对航空母舰飞行甲板上舰载机弹药保障面临的调度效率不高的问题,提出了一种改进灰狼优化(grey wolf optimizer, GWO)算法。根据甲板上多升降机多运输车的场景特点,建立了由多车场出发、向多目标转运的问题模型。融合遗传算法算子交叉...针对航空母舰飞行甲板上舰载机弹药保障面临的调度效率不高的问题,提出了一种改进灰狼优化(grey wolf optimizer, GWO)算法。根据甲板上多升降机多运输车的场景特点,建立了由多车场出发、向多目标转运的问题模型。融合遗传算法算子交叉思想实现了对灰狼种群初始解的初步优化,并通过直线转运路径中间点定义、整数编码、负整数标志分组等方法实现了对GWO算法求解过程的改进。同时,增加了灰狼个体自由狩猎流程,有效克服了结果陷入局部最优和早熟的问题。最终,通过对场景实例的优化求解,验证了所提方法的有效性和可行性。展开更多
在船舶大型化的发展以及港口资源日益紧张的趋势下,拖轮调度作为减少港口拥堵与节约港口资源的重要手段,成为当前亟待解决的问题。通过以拖轮空驶燃油成本与拖轮助航燃油成本为目标函数,构建多停泊基地条件下的多目标拖轮调度模型,提出...在船舶大型化的发展以及港口资源日益紧张的趋势下,拖轮调度作为减少港口拥堵与节约港口资源的重要手段,成为当前亟待解决的问题。通过以拖轮空驶燃油成本与拖轮助航燃油成本为目标函数,构建多停泊基地条件下的多目标拖轮调度模型,提出一种混合小生境灰狼算法(Hybrid Niche Grey Wolf Optimization,HNGWO)进行求解,针对拖轮调度问题的整数规划特点引入交叉修正更新策略,以加强算法的收敛性能,最后分别采用CPLEX、GA、PSO、GWO、HNGWO对多规模算例的求解结果进行对比分析。结果表明,HNGWO相比于GA、PSO的最优值平均优化比例可达5.07%,相比于GWO的收敛速度平均优化比例为13.23%,并输出中等规模下的收敛曲线与最优调度方案甘特图,直观展示了改进算法的求解效果与收敛速度,为提高港口通行效率与经济效益提供了参考方案。展开更多
武器-目标分配(weapon target assignment,WTA)问题是根据武器对来袭目标毁伤概率的不同,合理确定待打击目标的武器分配方案,以达到用尽可能少的武器对来袭目标毁伤程度最大化的目的,是作战指挥决策领域的重要研究内容。在构建WTA问题...武器-目标分配(weapon target assignment,WTA)问题是根据武器对来袭目标毁伤概率的不同,合理确定待打击目标的武器分配方案,以达到用尽可能少的武器对来袭目标毁伤程度最大化的目的,是作战指挥决策领域的重要研究内容。在构建WTA问题模型的基础上,针对传统灰狼优化(grey wolf optimization,GWO)算法局部开发能力不足等问题,采取了一种精英保留及免疫变异局部搜索策略。改进灰狼优化算法(improved grey wolf optimization,IGWO)首先在灰狼种群中选择部分优质精英个体,然后通过随机点变异和受体编辑两种免疫局部搜索策略对精英个体进一步寻优,从而改善传统GWO算法过早收敛和易陷入局部最优的缺点。针对3种不同规模的武器-目标分配问题,将IGWO与交叉熵算法、传统GWO算法进行了对比,计算结果显示IGWO算法所求适应度值的分位数均明显高于对比算法,进而验证了IGWO算法的有效性。展开更多
文摘对计及经济、环境因素的电力系统发电调度问题(Economic Environmental Dispatching,EED)进行研究,提出一种采用改进多目标灰狼算法的发电调度规划方案。构建基于发电燃料成本、污染气体排放量和节点电压偏移量等指标的多目标EED模型,并采用改进的多目标灰狼算法进行求解,以得到更优的Pareto前沿和折中解。设计多度量自适应FCM算法对灰狼算法(Gray Wolf Algorithm,GWA)种群多样性进行分析,重新定义狼群层级结构和Pareto前沿规模控制策略,并在此基础上提出反向学习和变异进化策略,以提升GWA全局收敛性能。仿真结果表明,改进的GWA具有优秀全局寻优能力,而且基于改进多目标灰狼算法得到的Pareto前沿和折中解更具可行性和优越性。
文摘针对导弹打击地面目标时的瞄准点优选问题,提出了一种利用改进灰狼优化算法(improved grey wolf op timization,IGWO)选取最优瞄准点的瞄准点选择方法。该算法基于维度学习的狩猎搜索策略(dimension learning-based hunting,DLH),为每个瞄准点构建相邻的瞄准点集合,集合中的瞄准点可以互相共享信息,增强局部搜索和全局搜索之间的平衡,并保持多样性。在仿真实验中,将毁伤评估模型的评估函数作为瞄准点选取好坏的评估函数,并且设计导弹打击地面目标的实例对瞄准点选择方法进行验证,实验结果表明,该方法求得的瞄准点具有较高的可信度,为火力筹划中瞄准点的寻优提供了新方法。
文摘针对航空母舰飞行甲板上舰载机弹药保障面临的调度效率不高的问题,提出了一种改进灰狼优化(grey wolf optimizer, GWO)算法。根据甲板上多升降机多运输车的场景特点,建立了由多车场出发、向多目标转运的问题模型。融合遗传算法算子交叉思想实现了对灰狼种群初始解的初步优化,并通过直线转运路径中间点定义、整数编码、负整数标志分组等方法实现了对GWO算法求解过程的改进。同时,增加了灰狼个体自由狩猎流程,有效克服了结果陷入局部最优和早熟的问题。最终,通过对场景实例的优化求解,验证了所提方法的有效性和可行性。
文摘在船舶大型化的发展以及港口资源日益紧张的趋势下,拖轮调度作为减少港口拥堵与节约港口资源的重要手段,成为当前亟待解决的问题。通过以拖轮空驶燃油成本与拖轮助航燃油成本为目标函数,构建多停泊基地条件下的多目标拖轮调度模型,提出一种混合小生境灰狼算法(Hybrid Niche Grey Wolf Optimization,HNGWO)进行求解,针对拖轮调度问题的整数规划特点引入交叉修正更新策略,以加强算法的收敛性能,最后分别采用CPLEX、GA、PSO、GWO、HNGWO对多规模算例的求解结果进行对比分析。结果表明,HNGWO相比于GA、PSO的最优值平均优化比例可达5.07%,相比于GWO的收敛速度平均优化比例为13.23%,并输出中等规模下的收敛曲线与最优调度方案甘特图,直观展示了改进算法的求解效果与收敛速度,为提高港口通行效率与经济效益提供了参考方案。
文摘武器-目标分配(weapon target assignment,WTA)问题是根据武器对来袭目标毁伤概率的不同,合理确定待打击目标的武器分配方案,以达到用尽可能少的武器对来袭目标毁伤程度最大化的目的,是作战指挥决策领域的重要研究内容。在构建WTA问题模型的基础上,针对传统灰狼优化(grey wolf optimization,GWO)算法局部开发能力不足等问题,采取了一种精英保留及免疫变异局部搜索策略。改进灰狼优化算法(improved grey wolf optimization,IGWO)首先在灰狼种群中选择部分优质精英个体,然后通过随机点变异和受体编辑两种免疫局部搜索策略对精英个体进一步寻优,从而改善传统GWO算法过早收敛和易陷入局部最优的缺点。针对3种不同规模的武器-目标分配问题,将IGWO与交叉熵算法、传统GWO算法进行了对比,计算结果显示IGWO算法所求适应度值的分位数均明显高于对比算法,进而验证了IGWO算法的有效性。