In order to check the validity of the mathematical model for analyzing the flow field in the air-agitated seed precipitation tank,a scaled down experimental apparatus was designed and the colored tracer and KCl tracer...In order to check the validity of the mathematical model for analyzing the flow field in the air-agitated seed precipitation tank,a scaled down experimental apparatus was designed and the colored tracer and KCl tracer were added in the apparatus to follow the real flow line.Virtue tracers were considered in the mathematical model and the algorithm of tracers was built.The comparison of the results between the experiment and numerical calculation shows that the time of the tracer flows out of stirring tube are 40 s in the experiment and 42 s in numerical calculated result.The transient diffusion process and the solution residence time of the numerical calculation are in good agreement with the experimental results,which indicates that the mathematical model is reliable and can be used to predict the flow field of the air-agitated seed precipitation tank.展开更多
The random distribution problem of dendrite preferred growth direction was settled by random grid method.This method was used to study the influence of forced laminar flow effect on multiple grains during solidificati...The random distribution problem of dendrite preferred growth direction was settled by random grid method.This method was used to study the influence of forced laminar flow effect on multiple grains during solidification.Taking high pure succinonitrile (SCN) undercooled melt as an example,the forced laminar flow effect on multiple grains was studied by phase-field model of single grain which coupled with flow equations at non-isothermal condition.The simulation results show that the random grid method can reasonably settle the problem of random distribution and is more effective.When the solid fraction is relatively low,melt particles flow around the downstream side of dendrite,and the flow velocity between two dendrite arms becomes high.At the stage of solidification time less than 1800Δt,every dendrite grows freely;the upstream dendrites are stronger than the downstream ones.The higher the melt flow rate,the higher the solid fraction.However,when the solid fraction is relatively high,the dendrite arm intertwins and only a little residual melt which is not encapsulated can flow;the solid fraction will gradually tend to equal to solid fraction of melt without flow.展开更多
A gamma-ray Computed Tomography (CT)technique based on MATLAB has been developed,and its potential for the application of multiphase flow detection has been demonstrated with simulation results.Aiming to improve the...A gamma-ray Computed Tomography (CT)technique based on MATLAB has been developed,and its potential for the application of multiphase flow detection has been demonstrated with simulation results.Aiming to improve the real time performance,we design a CT system with fixed sources and limited detecors.By dissecting the imaging region with Delaunay triangulation method,the algebraic reconstruction algorithm and simultaneous multiplicative algebraic reconstruction algorithm re implemented respective algebraic reconstruction algorithm are implemented respectively to reconstruct cross-sectional images.The resultant images can be utilized to identify flow regimes or extract characteristic parameters.展开更多
Comparisons between the numerical predictions from a two-phase model and the experimental hydrodynamic data have been performed in fully developed gas-solid flows for FCC catalysts. The resultssuggested the existence ...Comparisons between the numerical predictions from a two-phase model and the experimental hydrodynamic data have been performed in fully developed gas-solid flows for FCC catalysts. The resultssuggested the existence of self-similar solid flux profiles at low solid fluxes. Non-uniformity in theradial solids fluxes was found with a high solid flowing mainly downward near the wall. The modelpredictions were reasonably caught up the experimental trends.展开更多
In order to measure the flow velocity of carbon particle suspension perpendicular to the receiving axis of ultrasound transducer, the standard deviation of photoacoustic Doppler frequency spectrum is used to estimate ...In order to measure the flow velocity of carbon particle suspension perpendicular to the receiving axis of ultrasound transducer, the standard deviation of photoacoustic Doppler frequency spectrum is used to estimate the bandwidth broadening, and the spectrum standard deviation is calculated by an auto-correlation method. A 532 nm pulsed laser with the repetition rate of 20 Hz is used as a pumping source to generate photoacoustic signal. The photoacoustic signals are detected using a focused PZT ultrasound transducer with the central frequency of 10 MHz. The suspension of carbon particles is driven by a syringe pump. The complex photoacoustic signal is calculated by Hilbert transformation from time domain signal before auto-correlation. The standard deviation of the Doppler bandwidth broadening is calculated by averaging the auto-correlation results of several individual A scans. The feasibility of the proposed method is demonstrated by measuring the spectrum standard deviation of the transversal carbon particle flow from 5.0 mm/s to 8.4 mrn/s. The experimental results show that the auto-correlation result is approximately linearly distributed within the measuring range.展开更多
基金Project(07JJ4016) supported by the Natural Science Foundation of Hunan Procvince,China
文摘In order to check the validity of the mathematical model for analyzing the flow field in the air-agitated seed precipitation tank,a scaled down experimental apparatus was designed and the colored tracer and KCl tracer were added in the apparatus to follow the real flow line.Virtue tracers were considered in the mathematical model and the algorithm of tracers was built.The comparison of the results between the experiment and numerical calculation shows that the time of the tracer flows out of stirring tube are 40 s in the experiment and 42 s in numerical calculated result.The transient diffusion process and the solution residence time of the numerical calculation are in good agreement with the experimental results,which indicates that the mathematical model is reliable and can be used to predict the flow field of the air-agitated seed precipitation tank.
基金Project(10964004) supported by the National Natural Science Foundation of ChinaProject(20070731001) supported by Research Fund for the Doctoral Program of China+1 种基金 Project(096RJZA104) supported by the Natural Science Foundation of Gansu Province,ChinaProject(SB14200801) supported by the Doctoral Fund of Lanzhou University of Technology,China
文摘The random distribution problem of dendrite preferred growth direction was settled by random grid method.This method was used to study the influence of forced laminar flow effect on multiple grains during solidification.Taking high pure succinonitrile (SCN) undercooled melt as an example,the forced laminar flow effect on multiple grains was studied by phase-field model of single grain which coupled with flow equations at non-isothermal condition.The simulation results show that the random grid method can reasonably settle the problem of random distribution and is more effective.When the solid fraction is relatively low,melt particles flow around the downstream side of dendrite,and the flow velocity between two dendrite arms becomes high.At the stage of solidification time less than 1800Δt,every dendrite grows freely;the upstream dendrites are stronger than the downstream ones.The higher the melt flow rate,the higher the solid fraction.However,when the solid fraction is relatively high,the dendrite arm intertwins and only a little residual melt which is not encapsulated can flow;the solid fraction will gradually tend to equal to solid fraction of melt without flow.
基金supported by National Natural Science Foundation of China(No.60820106002,50937005,60532020)
文摘A gamma-ray Computed Tomography (CT)technique based on MATLAB has been developed,and its potential for the application of multiphase flow detection has been demonstrated with simulation results.Aiming to improve the real time performance,we design a CT system with fixed sources and limited detecors.By dissecting the imaging region with Delaunay triangulation method,the algebraic reconstruction algorithm and simultaneous multiplicative algebraic reconstruction algorithm re implemented respective algebraic reconstruction algorithm are implemented respectively to reconstruct cross-sectional images.The resultant images can be utilized to identify flow regimes or extract characteristic parameters.
文摘Comparisons between the numerical predictions from a two-phase model and the experimental hydrodynamic data have been performed in fully developed gas-solid flows for FCC catalysts. The resultssuggested the existence of self-similar solid flux profiles at low solid fluxes. Non-uniformity in theradial solids fluxes was found with a high solid flowing mainly downward near the wall. The modelpredictions were reasonably caught up the experimental trends.
基金supported by the Joint Funds of the National Natural Science Foundation of China(No.U1204612)the Natural Science Foundation of He’nan Educational Committee(No.13A416180)
文摘In order to measure the flow velocity of carbon particle suspension perpendicular to the receiving axis of ultrasound transducer, the standard deviation of photoacoustic Doppler frequency spectrum is used to estimate the bandwidth broadening, and the spectrum standard deviation is calculated by an auto-correlation method. A 532 nm pulsed laser with the repetition rate of 20 Hz is used as a pumping source to generate photoacoustic signal. The photoacoustic signals are detected using a focused PZT ultrasound transducer with the central frequency of 10 MHz. The suspension of carbon particles is driven by a syringe pump. The complex photoacoustic signal is calculated by Hilbert transformation from time domain signal before auto-correlation. The standard deviation of the Doppler bandwidth broadening is calculated by averaging the auto-correlation results of several individual A scans. The feasibility of the proposed method is demonstrated by measuring the spectrum standard deviation of the transversal carbon particle flow from 5.0 mm/s to 8.4 mrn/s. The experimental results show that the auto-correlation result is approximately linearly distributed within the measuring range.