A nonparametric Bayesian method is presented to classify the MPSK (M-ary phase shift keying) signals. The MPSK signals with unknown signal noise ratios (SNRs) are modeled as a Gaussian mixture model with unknown m...A nonparametric Bayesian method is presented to classify the MPSK (M-ary phase shift keying) signals. The MPSK signals with unknown signal noise ratios (SNRs) are modeled as a Gaussian mixture model with unknown means and covariances in the constellation plane, and a clustering method is proposed to estimate the probability density of the MPSK signals. The method is based on the nonparametric Bayesian inference, which introduces the Dirichlet process as the prior probability of the mixture coefficient, and applies a normal inverse Wishart (NIW) distribution as the prior probability of the unknown mean and covariance. Then, according to the received signals, the parameters are adjusted by the Monte Carlo Markov chain (MCMC) random sampling algorithm. By iterations, the density estimation of the MPSK signals can be estimated. Simulation results show that the correct recognition ratio of 2/4/8PSK is greater than 95% under the condition that SNR 〉5 dB and 1 600 symbols are used in this method.展开更多
Multi-way principal component analysis (MPCA) is the most widely utilized multivariate statistical process control method for batch processes. Previous research on MPCA has commonly agreed that it is not a suitable me...Multi-way principal component analysis (MPCA) is the most widely utilized multivariate statistical process control method for batch processes. Previous research on MPCA has commonly agreed that it is not a suitable method for multiphase batch process analysis. In this paper, abundant phase information is revealed by way of partitioning MPCA model, and a new phase identification method based on global dynamic information is proposed. The application to injection molding shows that it is a feasible and effective method for multiphase batch process knowledge understanding, phase division and process monitoring.展开更多
The element partitioning in a Pb-Bi concentrate oxygen-rich bath smelting process was studied using thermodynamic equilibrium simulation method. Effects of oxygen to feed ratio(OFR) and sulfur dioxide partial pressure...The element partitioning in a Pb-Bi concentrate oxygen-rich bath smelting process was studied using thermodynamic equilibrium simulation method. Effects of oxygen to feed ratio(OFR) and sulfur dioxide partial pressure(pSO2) on the partitionings of Bi, Pb, As, Sb, Cu and Ag were analyzed and compared with industrial data. The results suggested that the optimal OFR was between 6.3 and 6.8 kmol/t to maximize Bi, Pb, Cu and Ag partitioning in the metal phase. Further increase of OFR led to the drop of metal partitioning and increase of slag liquidus temperature. High pSO2 led to high deportment of Bi and Pb in the gas phase mainly in the form of sulfides, suggesting that a low pSO2 was conducive for reducing the dust ratio.展开更多
A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,wher...A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,where SM method serves as the separation of common subspace and specific subspace.Compared with the traditional methods,the main contributions of this work are:1) SM consisted of two measures of distance and angle to accommodate process characters.The different monitoring effect involves putting on the different weight,which would simplify the monitoring model structure and enhance its reliability and robustness.2) The proposed method can be used to find faults by the common space and judge which mode the fault belongs to by the specific subspace.Results of algorithm analysis and fault detection experiments indicate the validity and practicability of the presented method.展开更多
A large-scale experimental for multiphase combustion and explosion study was developed and manufactured. The explosion tank consists of a 2 m diameter, 3.5 m long tube and ellipsoidai dames on both ends. The volume of...A large-scale experimental for multiphase combustion and explosion study was developed and manufactured. The explosion tank consists of a 2 m diameter, 3.5 m long tube and ellipsoidai dames on both ends. The volume of the experimental tank is 10 ma. Pressure histories of the explosion pressure can be measured at different locations in the tank. High pressure glass windows of 200~300 mm were used to have access to the visualization of the explosion process. The explosion process of methane/air mixture and methane/coal dust/air mixture initiated by a 40 J electric spark at the center of the tank was studied in the large^scale experimental system. Five pressure sonsars were arranged in the tank with different distances from the ignition point. Ton dust dispersion traits were equipped to eject dust into the tank. A high-speed camera system was used to visualize the flame propagation during the explosion process. The characteristics of the pressure wave and flame propagated in methane/air mixtures and methane/coal dust/air mixtures have been展开更多
1. Introduction Zeolites are widely used in acid heterogeneous catalysis [1, 2]. Due to the unique physical and chemical properties ofzeolites, they are widely used in commercial catalytic processes, such as fluidized...1. Introduction Zeolites are widely used in acid heterogeneous catalysis [1, 2]. Due to the unique physical and chemical properties ofzeolites, they are widely used in commercial catalytic processes, such as fluidized catalytic cracking, hydrocracking, methanol conversion to gasoline or olefins, ethylbenzene production, xylene isomerization, aromatics hydrogenation [3-9]. Acidity, high thermal stability, and shape selectivity determine the use of zeolites as catalysts in reaction processes through acid mechanisms [ 10].展开更多
Surface tension of fluids is crucial for multiphase systems and is often controlled during industrial processes by introducing surfactants. In this study, effect of various microwave radiation modes on surface tension...Surface tension of fluids is crucial for multiphase systems and is often controlled during industrial processes by introducing surfactants. In this study, effect of various microwave radiation modes on surface tension of water was investigated as an alternative physical method to manipulate the surface tension without using chemicals. It is found that surface tension decreased quickly while temperature increased during microwave. Once the radiation was turned off, the temperature returned rapidly as expected. However, surface tension did not recover so much. The minimum surface tension after microwave radiation depended on the power. Moreover, a second radiation can have additional reduction on surface tension.展开更多
We measured the concentrations and distribution of major polyamines(spermine, putrescine and spermidine) in seawater during successive spring algal blooms in an area of frequent harmful blooms in the East China Sea. S...We measured the concentrations and distribution of major polyamines(spermine, putrescine and spermidine) in seawater during successive spring algal blooms in an area of frequent harmful blooms in the East China Sea. Spermine, putrescine, and spermidine concentrations were analyzed by high performance liquid chromatography and ranged from 1–64, 7–81, and 0–19 nmol/L. Spermine was present at the highest concentrations, followed by putrescine and spermidine. In late April, when a diatom bloom dominated by Skeletonema costatum dispersed, polyamine concentrations increased, presumably as a result of diatom decomposition. In early May, when a dinoflagellate bloom dominated by Prorocentrum donghaiense occurred, the polyamine concentration decreased from the level seen in late April. The abundant polyamines that decomposed and were released during the diatom bloom in late April may have promoted the growth of P. donghaiense, resulting in its dominance.展开更多
Soft matter has attracted extensive attention due to its special physical/chemical properties and holds great promise in many applications. However, obtaining a detailed understanding of both complex fluid and mass tr...Soft matter has attracted extensive attention due to its special physical/chemical properties and holds great promise in many applications. However, obtaining a detailed understanding of both complex fluid and mass transport in soft matter, especially in hierarchical porous media of biological tissues, still remains a huge challenge. Herein, inspired by fast tracer transport in loose connective tissues of living systems, we observed an interesting phenomenon of fast molecular transport in situ in an artificial hierarchical multiphase porous medium (a micrometer scale hydrophobic fiber network filled with nanometer scale hydrophilic porous medium), which was simply fabricated through electro- spinning technology and polymerization. The transportation speed of molecules in the micrometer fiber network is larger than simple diffusion in nanometer media, which is better described by Fick's law. We further proved that the phenomenon is based on the nanoconfined air/water/solid interface around the micrometer hydrophobic fibers. We focus on the key factors, referring to SA, (the confined multiphase area around the microfibers) and Nc (the connectivity node degree of the skeletal portion in the nanometer hydrogel medium). Next, a quantitative parameter, VTCM (transport chance mean-value), was introduced to describe the molecular transport capability of the fiber network within hierarchical multiphase porous systems. These fundamental advances can be applied de novo to understand the process of so-called simple diffusion in biological systems, and even to re-describe many molecular events in biologically nanoconfined spaces.展开更多
We derive the adiabatic and non-adiabatic Berry phases in the generalized Jaynes-Cummings model of multi-photon process. The results show that the adiabatic Berry phase is kept a constant π independent of all the par...We derive the adiabatic and non-adiabatic Berry phases in the generalized Jaynes-Cummings model of multi-photon process. The results show that the adiabatic Berry phase is kept a constant π independent of all the parameters, while the non-adiabatic approximate Berry phase is parameter-dependent, proportional to the average photon number m, and tends to be constant with the increasing detuning. In the ease of exact n-photon resonance and an integer ratio of m/n, the two results coincide with each other, otherwise there appears an additional non-trivial phase factor.展开更多
We study the influence of multi-photon processes on the geometric quantum computation in the systems of superconducting qubits based on the displacement-like and the general squeezed operator methods. As an example, w...We study the influence of multi-photon processes on the geometric quantum computation in the systems of superconducting qubits based on the displacement-like and the general squeezed operator methods. As an example, we focus on the question about how to implement a two-qubit geometric phase gate using superconducting circuit quantum electrodynamics with both single- and two-photon interaction between the qubits and the cavity modes. We find that the multiphoton processes are not only controllable but also improve the gating speed. The comparison with other physical systems and experimental feasibility are discussed in detail.展开更多
基金Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China(No.3104001014)
文摘A nonparametric Bayesian method is presented to classify the MPSK (M-ary phase shift keying) signals. The MPSK signals with unknown signal noise ratios (SNRs) are modeled as a Gaussian mixture model with unknown means and covariances in the constellation plane, and a clustering method is proposed to estimate the probability density of the MPSK signals. The method is based on the nonparametric Bayesian inference, which introduces the Dirichlet process as the prior probability of the mixture coefficient, and applies a normal inverse Wishart (NIW) distribution as the prior probability of the unknown mean and covariance. Then, according to the received signals, the parameters are adjusted by the Monte Carlo Markov chain (MCMC) random sampling algorithm. By iterations, the density estimation of the MPSK signals can be estimated. Simulation results show that the correct recognition ratio of 2/4/8PSK is greater than 95% under the condition that SNR 〉5 dB and 1 600 symbols are used in this method.
基金Supported by the Guangzhou Scientific and Technological Project (2012J5100032)Nansha District Independent Innovation Project (201103003)
文摘Multi-way principal component analysis (MPCA) is the most widely utilized multivariate statistical process control method for batch processes. Previous research on MPCA has commonly agreed that it is not a suitable method for multiphase batch process analysis. In this paper, abundant phase information is revealed by way of partitioning MPCA model, and a new phase identification method based on global dynamic information is proposed. The application to injection molding shows that it is a feasible and effective method for multiphase batch process knowledge understanding, phase division and process monitoring.
基金financial supports from the National Key R&D Program of China (2018YFC1901604)the Natural Science Foundation of Hunan Province,China (2018JJ3662)+1 种基金the China Scholarship Council (201706375005)the China Postdoctoral Science Foundation (2018M632988)。
文摘The element partitioning in a Pb-Bi concentrate oxygen-rich bath smelting process was studied using thermodynamic equilibrium simulation method. Effects of oxygen to feed ratio(OFR) and sulfur dioxide partial pressure(pSO2) on the partitionings of Bi, Pb, As, Sb, Cu and Ag were analyzed and compared with industrial data. The results suggested that the optimal OFR was between 6.3 and 6.8 kmol/t to maximize Bi, Pb, Cu and Ag partitioning in the metal phase. Further increase of OFR led to the drop of metal partitioning and increase of slag liquidus temperature. High pSO2 led to high deportment of Bi and Pb in the gas phase mainly in the form of sulfides, suggesting that a low pSO2 was conducive for reducing the dust ratio.
基金Projects(61273163,61325015,61304121)supported by the National Natural Science Foundation of China
文摘A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,where SM method serves as the separation of common subspace and specific subspace.Compared with the traditional methods,the main contributions of this work are:1) SM consisted of two measures of distance and angle to accommodate process characters.The different monitoring effect involves putting on the different weight,which would simplify the monitoring model structure and enhance its reliability and robustness.2) The proposed method can be used to find faults by the common space and judge which mode the fault belongs to by the specific subspace.Results of algorithm analysis and fault detection experiments indicate the validity and practicability of the presented method.
基金supported by the National Natural Science Foundation of China(No.10772032)the Foundation of State Key Lab of Explosion Science and Technology(No.ZDKT08-02-6,and YBKT09-1)
文摘A large-scale experimental for multiphase combustion and explosion study was developed and manufactured. The explosion tank consists of a 2 m diameter, 3.5 m long tube and ellipsoidai dames on both ends. The volume of the experimental tank is 10 ma. Pressure histories of the explosion pressure can be measured at different locations in the tank. High pressure glass windows of 200~300 mm were used to have access to the visualization of the explosion process. The explosion process of methane/air mixture and methane/coal dust/air mixture initiated by a 40 J electric spark at the center of the tank was studied in the large^scale experimental system. Five pressure sonsars were arranged in the tank with different distances from the ignition point. Ton dust dispersion traits were equipped to eject dust into the tank. A high-speed camera system was used to visualize the flame propagation during the explosion process. The characteristics of the pressure wave and flame propagated in methane/air mixtures and methane/coal dust/air mixtures have been
文摘1. Introduction Zeolites are widely used in acid heterogeneous catalysis [1, 2]. Due to the unique physical and chemical properties ofzeolites, they are widely used in commercial catalytic processes, such as fluidized catalytic cracking, hydrocracking, methanol conversion to gasoline or olefins, ethylbenzene production, xylene isomerization, aromatics hydrogenation [3-9]. Acidity, high thermal stability, and shape selectivity determine the use of zeolites as catalysts in reaction processes through acid mechanisms [ 10].
文摘Surface tension of fluids is crucial for multiphase systems and is often controlled during industrial processes by introducing surfactants. In this study, effect of various microwave radiation modes on surface tension of water was investigated as an alternative physical method to manipulate the surface tension without using chemicals. It is found that surface tension decreased quickly while temperature increased during microwave. Once the radiation was turned off, the temperature returned rapidly as expected. However, surface tension did not recover so much. The minimum surface tension after microwave radiation depended on the power. Moreover, a second radiation can have additional reduction on surface tension.
基金Supported by the National Basic Research Program of China(973 Program)(No.2010CB428701)the National Natural Science Foundation of China(Nos.40976047,42176118)
文摘We measured the concentrations and distribution of major polyamines(spermine, putrescine and spermidine) in seawater during successive spring algal blooms in an area of frequent harmful blooms in the East China Sea. Spermine, putrescine, and spermidine concentrations were analyzed by high performance liquid chromatography and ranged from 1–64, 7–81, and 0–19 nmol/L. Spermine was present at the highest concentrations, followed by putrescine and spermidine. In late April, when a diatom bloom dominated by Skeletonema costatum dispersed, polyamine concentrations increased, presumably as a result of diatom decomposition. In early May, when a dinoflagellate bloom dominated by Prorocentrum donghaiense occurred, the polyamine concentration decreased from the level seen in late April. The abundant polyamines that decomposed and were released during the diatom bloom in late April may have promoted the growth of P. donghaiense, resulting in its dominance.
基金This study was supported by the National Natural Science Foundation of China (No. 81141118) and the National Basic Research Program of China (973 Program) (Nos. 2012CB9333800 and 2012CB518506).
文摘Soft matter has attracted extensive attention due to its special physical/chemical properties and holds great promise in many applications. However, obtaining a detailed understanding of both complex fluid and mass transport in soft matter, especially in hierarchical porous media of biological tissues, still remains a huge challenge. Herein, inspired by fast tracer transport in loose connective tissues of living systems, we observed an interesting phenomenon of fast molecular transport in situ in an artificial hierarchical multiphase porous medium (a micrometer scale hydrophobic fiber network filled with nanometer scale hydrophilic porous medium), which was simply fabricated through electro- spinning technology and polymerization. The transportation speed of molecules in the micrometer fiber network is larger than simple diffusion in nanometer media, which is better described by Fick's law. We further proved that the phenomenon is based on the nanoconfined air/water/solid interface around the micrometer hydrophobic fibers. We focus on the key factors, referring to SA, (the confined multiphase area around the microfibers) and Nc (the connectivity node degree of the skeletal portion in the nanometer hydrogel medium). Next, a quantitative parameter, VTCM (transport chance mean-value), was introduced to describe the molecular transport capability of the fiber network within hierarchical multiphase porous systems. These fundamental advances can be applied de novo to understand the process of so-called simple diffusion in biological systems, and even to re-describe many molecular events in biologically nanoconfined spaces.
基金Supported by the National Natural Science Foundation of China under Grants Nos.11075099,11047167,and 11105087
文摘We derive the adiabatic and non-adiabatic Berry phases in the generalized Jaynes-Cummings model of multi-photon process. The results show that the adiabatic Berry phase is kept a constant π independent of all the parameters, while the non-adiabatic approximate Berry phase is parameter-dependent, proportional to the average photon number m, and tends to be constant with the increasing detuning. In the ease of exact n-photon resonance and an integer ratio of m/n, the two results coincide with each other, otherwise there appears an additional non-trivial phase factor.
基金Supported by the National Science Foundation of China under Grant Nos.11074070,10774042,and 10774163the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institute of Hunan Province+1 种基金the Key Project of Science and Technology of Hunan Province under Grant No.2010FJ2005the NKBRSFC under Grant No.2010CB922904
文摘We study the influence of multi-photon processes on the geometric quantum computation in the systems of superconducting qubits based on the displacement-like and the general squeezed operator methods. As an example, we focus on the question about how to implement a two-qubit geometric phase gate using superconducting circuit quantum electrodynamics with both single- and two-photon interaction between the qubits and the cavity modes. We find that the multiphoton processes are not only controllable but also improve the gating speed. The comparison with other physical systems and experimental feasibility are discussed in detail.