We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular...We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.展开更多
The double drum coal shearer is widely applied for the underground coal exploration in the mining industry.The vibration and noise control are significant factors for the stability design of the double drum coal shear...The double drum coal shearer is widely applied for the underground coal exploration in the mining industry.The vibration and noise control are significant factors for the stability design of the double drum coal shearer.In this paper,the vibration properties of a double drum coal shearer are firstly investigated.The horizontal,transverse and torsional vibrations of the motor body and the angle displacements of the rockers are taken into account.The walking units and the hydraulic units are modeled by the stiffness-damping systems.The nonlinear equation of motion of the double drum coal shearer is established by applying the Lagrange’s equation.The nonlinear vibration response of the system is calculated by using the Runge Kutta numerical method.The effects of the shearing loads,the equivalent damping and stiffness of the walking units,the inclination angels of the rockers and the equivalent damping and stiffness of the hydraulic units on the vibration properties of the system are discussed.展开更多
We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider ...We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call "transient osmosis". We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes.展开更多
The transient Rayleigh wave exploration has high detection accuracy in shallow exploration. The effect of detection array is comprehensive reflection of the velocity of rock and soil mass. Therefore, the roiling multi...The transient Rayleigh wave exploration has high detection accuracy in shallow exploration. The effect of detection array is comprehensive reflection of the velocity of rock and soil mass. Therefore, the roiling multi-channel transient acquisition system has been adopted in this study, which turns one dimensional transient Rayleigh wave exploration into two dimensions, consequently, the two-dimensional velocity distribution of rock and soil mass under the survey line has been achieved. Through comparing with the shallow seismic reflected wave exploration, the result indicates that the rolling multi-channel transient acquisition system has accurate resolution. Thus, in the process of the shallow reflected wave exploration, if the surface wave has developed, the coalition between the reflected wave exploration and the two-dimensional transient Rayleigh wave exploration should actualize the accuracy of exploration.展开更多
In this paper, post-fault-tolerant control strategies for quad-inverter multiphase-multilevel induction motor drives are investigated. More specifically, four standard two-level three-phase VSIs (voltage source inver...In this paper, post-fault-tolerant control strategies for quad-inverter multiphase-multilevel induction motor drives are investigated. More specifically, four standard two-level three-phase VSIs (voltage source inverters) supplying the open-end windings of a dual three-phase induction motor is considered, quadrupling the power capability of a single VSI with given voltage and current ratings. In healthy conditions, the control algorithm is able to generate multi-level voltage waveforms, equivalent to the ones of a three-level inverter and to share the total motor power among the four dc sources in each switching period. This sharing capability is investigated under post-fault operating conditions, when one VSI must be completely insulated due to a severe failure on it. In this case, the conversion power unit can operate with a reduced power rating by a proper modulation of the remaining three VSIs. The whole ac motor drive has been numerically implemented, and the effectiveness of the proposed control strategies under healthy and post-fault operating conditions have been proved.展开更多
In this paper the flow through a control directional valve is studied by means of a CFD (computational fluid-dynamics) analysis under transient operating conditions. The mesh motion is resolved on a time basis as a ...In this paper the flow through a control directional valve is studied by means of a CFD (computational fluid-dynamics) analysis under transient operating conditions. The mesh motion is resolved on a time basis as a function of the external actuation system In the analysis, an open source fluid-dynamics code is used and both cavitation and turbulence are accounted for in the modeling. Moreover, the numerical model of the working fluid is modified in order to account also for the non-Newtonian fluids. The effects of the shear rate on the shear stress are accounted for both by using experimental measurements and correlations available in literature, such as the Herschel-Bulkley model. The analysis determines the performance of the control directional valve under different operating conditions when using either Newtonian or non-Newtonian fluids. In particular, the discharge coefficient, the recirculating regions, the flow acceleration angle and the pressure and velocity fields are investigated.展开更多
In the present work,a nanoporous ZnO/n-Si structure has been proposed as a new type infrared photodetector.Triggered by one laser pulse with wavelength of 1064 nm,this structure exhibits a double-peak decay of transie...In the present work,a nanoporous ZnO/n-Si structure has been proposed as a new type infrared photodetector.Triggered by one laser pulse with wavelength of 1064 nm,this structure exhibits a double-peak decay of transient photovoltage.Also,the time interval between these two peaks increases linearly with the increase of irradiated pulsed energy,indicating the promising application of this hetero-junction in photo-energy detection of infrared pulsed laser.A possible mechanism for this particular photoresponse has been discussed.展开更多
In this paper,we study the effect of spontaneously generated coherence(SGC) on transient evolution of gain without inversion(GWI) in a Doppler broadened quasi Λ-type four-level atomic system.It is shown that transien...In this paper,we study the effect of spontaneously generated coherence(SGC) on transient evolution of gain without inversion(GWI) in a Doppler broadened quasi Λ-type four-level atomic system.It is shown that transient evolution of GWI is very sensitive to the variation of SGC strength,and the transient maximum value and steady value of GWI both increase with SGC strength increasing.The transient and steady values of GWI with SGC are much larger than those without SGC.When Doppler broadening is present,the transient maximum value and steady value of GWI first increase and then decrease with Doppler broadening width(D) increasing,and the value of D which corresponds to the maximum transient GWI is different from that corresponding to the maximum steady GWI.The time needed for reaching the steady GWI increases with D increasing.The steady GWI,which is larger than that without Doppler broadening(D = 0),can be obtained by choosing appropriate D and SGC strength.展开更多
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.41304082)the China Postdoctoral Science Foundation(No.2016M590731)+2 种基金the Young Scientists Fund of the Natural Science Foundation of Hebei Province(No.D2014403011)the Program for Young Excellent Talents of Higher Education Institutions of Hebei Province(No.BJ2016046)the Geological survey project of China Geological Survey(No.1212011121197)
文摘We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.
基金Projects(51975511,U1708254)supported by the National Natural Science Foundation of ChinaProject(N2003023)supported by the Fundamental Research Funds for the Central Universities of China+1 种基金Project(2019YFB2004400)supported by the National Key Research and Development Program of ChinaProject(2020-MS-092)supported by the Natural Science Foundation of Liaoning Province,China。
文摘The double drum coal shearer is widely applied for the underground coal exploration in the mining industry.The vibration and noise control are significant factors for the stability design of the double drum coal shearer.In this paper,the vibration properties of a double drum coal shearer are firstly investigated.The horizontal,transverse and torsional vibrations of the motor body and the angle displacements of the rockers are taken into account.The walking units and the hydraulic units are modeled by the stiffness-damping systems.The nonlinear equation of motion of the double drum coal shearer is established by applying the Lagrange’s equation.The nonlinear vibration response of the system is calculated by using the Runge Kutta numerical method.The effects of the shearing loads,the equivalent damping and stiffness of the walking units,the inclination angels of the rockers and the equivalent damping and stiffness of the hydraulic units on the vibration properties of the system are discussed.
文摘We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call "transient osmosis". We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes.
文摘The transient Rayleigh wave exploration has high detection accuracy in shallow exploration. The effect of detection array is comprehensive reflection of the velocity of rock and soil mass. Therefore, the roiling multi-channel transient acquisition system has been adopted in this study, which turns one dimensional transient Rayleigh wave exploration into two dimensions, consequently, the two-dimensional velocity distribution of rock and soil mass under the survey line has been achieved. Through comparing with the shallow seismic reflected wave exploration, the result indicates that the rolling multi-channel transient acquisition system has accurate resolution. Thus, in the process of the shallow reflected wave exploration, if the surface wave has developed, the coalition between the reflected wave exploration and the two-dimensional transient Rayleigh wave exploration should actualize the accuracy of exploration.
文摘In this paper, post-fault-tolerant control strategies for quad-inverter multiphase-multilevel induction motor drives are investigated. More specifically, four standard two-level three-phase VSIs (voltage source inverters) supplying the open-end windings of a dual three-phase induction motor is considered, quadrupling the power capability of a single VSI with given voltage and current ratings. In healthy conditions, the control algorithm is able to generate multi-level voltage waveforms, equivalent to the ones of a three-level inverter and to share the total motor power among the four dc sources in each switching period. This sharing capability is investigated under post-fault operating conditions, when one VSI must be completely insulated due to a severe failure on it. In this case, the conversion power unit can operate with a reduced power rating by a proper modulation of the remaining three VSIs. The whole ac motor drive has been numerically implemented, and the effectiveness of the proposed control strategies under healthy and post-fault operating conditions have been proved.
文摘In this paper the flow through a control directional valve is studied by means of a CFD (computational fluid-dynamics) analysis under transient operating conditions. The mesh motion is resolved on a time basis as a function of the external actuation system In the analysis, an open source fluid-dynamics code is used and both cavitation and turbulence are accounted for in the modeling. Moreover, the numerical model of the working fluid is modified in order to account also for the non-Newtonian fluids. The effects of the shear rate on the shear stress are accounted for both by using experimental measurements and correlations available in literature, such as the Herschel-Bulkley model. The analysis determines the performance of the control directional valve under different operating conditions when using either Newtonian or non-Newtonian fluids. In particular, the discharge coefficient, the recirculating regions, the flow acceleration angle and the pressure and velocity fields are investigated.
基金supported by the National Key Basic Research Program of China (Grant No. 2014CB744300)the Specially Funded Program on National Key Scientific Instruments and Equipment Development (GrantNo. 2012YQ140005)+1 种基金the Beijing National Science Foundation (Grant No. 4122064)the Science Foundation of the China University of Petroleum (Beijing)
文摘In the present work,a nanoporous ZnO/n-Si structure has been proposed as a new type infrared photodetector.Triggered by one laser pulse with wavelength of 1064 nm,this structure exhibits a double-peak decay of transient photovoltage.Also,the time interval between these two peaks increases linearly with the increase of irradiated pulsed energy,indicating the promising application of this hetero-junction in photo-energy detection of infrared pulsed laser.A possible mechanism for this particular photoresponse has been discussed.
基金supported by the National Natural Science Foundation of China (No.11175105)
文摘In this paper,we study the effect of spontaneously generated coherence(SGC) on transient evolution of gain without inversion(GWI) in a Doppler broadened quasi Λ-type four-level atomic system.It is shown that transient evolution of GWI is very sensitive to the variation of SGC strength,and the transient maximum value and steady value of GWI both increase with SGC strength increasing.The transient and steady values of GWI with SGC are much larger than those without SGC.When Doppler broadening is present,the transient maximum value and steady value of GWI first increase and then decrease with Doppler broadening width(D) increasing,and the value of D which corresponds to the maximum transient GWI is different from that corresponding to the maximum steady GWI.The time needed for reaching the steady GWI increases with D increasing.The steady GWI,which is larger than that without Doppler broadening(D = 0),can be obtained by choosing appropriate D and SGC strength.