To evaluate the relationship between salinity tolerance and genetic diversity of plankton,we collected a wild species of plankton from Taipingjiao,Qingdao.The fragment of ITS1-5.8S rDNA-ITS2 was extracted and sequence...To evaluate the relationship between salinity tolerance and genetic diversity of plankton,we collected a wild species of plankton from Taipingjiao,Qingdao.The fragment of ITS1-5.8S rDNA-ITS2 was extracted and sequenced.The results showed that the plankton belongs to Oxyrrhis marina.The salinity tolerance of O.marina ranges from 4 to 60.Seven selected groups were built up to evaluate salinity tolerance and to assess genetic diversity by RAPD.The salinity tolerance comparison revealed considerable differences among groups:the strains of O.marina in group 4 could survive under salinity from 4 to 32,while the strains selected for salinity 60 died under the salinity lower than 16.Analysis of genetic diversity of the seven groups showed that the mean genetic diversity index value was 0.28,but it was only 0.16 in selected group of 4 and was 0.24 for group 60.The result of AMOVA suggested a significantly positive relationship between the salinity tolerance and genetic diversity of O.marina (P<0.01).This study indicates that consideration of intraspecific genetic divergence in O.marina might be indispensable when using it as a model in the study of salinity tolerance of wild plankton.展开更多
This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and break...This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and breaking. This numerical model is improved by 1) introducing Wen's frequency spectrum and Mitsuyasu's directional function, which are more suitable to the coastal area of China; 2) considering energy dissipation caused by bottom friction, which ensures more accurate results for large-scale and shallow water areas; 3) taking into account a non-linear dispersion relation. Predictions using the extended wave model are carried out to study the feasibility of constructing the Ai Hua yacht port in Qingdao, China, with a comparison between two port layouts in design. Wave fields inside the port for different incident wave directions, water levels and return periods are simulated, and then two kinds of parameters are calculated to evaluate the wave conditions for the two layouts. Analyses show that Layout I is better than Layout II. Calculation results also show that the harbor will be calm for different wave directions under the design water level. On the contrary, the wave conditions do not wholly meet the requirements of a yacht port for ship berthing under the extreme water level. For safety consideration, the elevation of the breakwater might need to be properly increased to prevent wave overtopping under such water level. The extended numerical simulation model may provide an effective approach to computing wave heights in a harbor.展开更多
文摘To evaluate the relationship between salinity tolerance and genetic diversity of plankton,we collected a wild species of plankton from Taipingjiao,Qingdao.The fragment of ITS1-5.8S rDNA-ITS2 was extracted and sequenced.The results showed that the plankton belongs to Oxyrrhis marina.The salinity tolerance of O.marina ranges from 4 to 60.Seven selected groups were built up to evaluate salinity tolerance and to assess genetic diversity by RAPD.The salinity tolerance comparison revealed considerable differences among groups:the strains of O.marina in group 4 could survive under salinity from 4 to 32,while the strains selected for salinity 60 died under the salinity lower than 16.Analysis of genetic diversity of the seven groups showed that the mean genetic diversity index value was 0.28,but it was only 0.16 in selected group of 4 and was 0.24 for group 60.The result of AMOVA suggested a significantly positive relationship between the salinity tolerance and genetic diversity of O.marina (P<0.01).This study indicates that consideration of intraspecific genetic divergence in O.marina might be indispensable when using it as a model in the study of salinity tolerance of wild plankton.
基金supported by the National Natural Science Foundation of China (50879085)the Program for New Century Excellent Talents in University(NCET-07-0778)Fundamental Research Funds for the Central Universities (2012QNA4020)
文摘This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and breaking. This numerical model is improved by 1) introducing Wen's frequency spectrum and Mitsuyasu's directional function, which are more suitable to the coastal area of China; 2) considering energy dissipation caused by bottom friction, which ensures more accurate results for large-scale and shallow water areas; 3) taking into account a non-linear dispersion relation. Predictions using the extended wave model are carried out to study the feasibility of constructing the Ai Hua yacht port in Qingdao, China, with a comparison between two port layouts in design. Wave fields inside the port for different incident wave directions, water levels and return periods are simulated, and then two kinds of parameters are calculated to evaluate the wave conditions for the two layouts. Analyses show that Layout I is better than Layout II. Calculation results also show that the harbor will be calm for different wave directions under the design water level. On the contrary, the wave conditions do not wholly meet the requirements of a yacht port for ship berthing under the extreme water level. For safety consideration, the elevation of the breakwater might need to be properly increased to prevent wave overtopping under such water level. The extended numerical simulation model may provide an effective approach to computing wave heights in a harbor.