Heterogeneous catalytic reactions involve the use of highly dispersed active phases such as metal, metal oxide, or metal sulphide nanoparticIes on thermally stable supports. Fluctuations of the reaction temperature du...Heterogeneous catalytic reactions involve the use of highly dispersed active phases such as metal, metal oxide, or metal sulphide nanoparticIes on thermally stable supports. Fluctuations of the reaction temperature during the reactions can induce sintering of the particles. The stability of such small particles represents a crucial parameter in the development of new families of catalysts with high activity in many fields. Here we report the stability of platinum nanoparticles (2-3 nm) on a few-layer graphene (FLG) surface as studied by in situ high temperature transmission electron microscopy.展开更多
文摘Heterogeneous catalytic reactions involve the use of highly dispersed active phases such as metal, metal oxide, or metal sulphide nanoparticIes on thermally stable supports. Fluctuations of the reaction temperature during the reactions can induce sintering of the particles. The stability of such small particles represents a crucial parameter in the development of new families of catalysts with high activity in many fields. Here we report the stability of platinum nanoparticles (2-3 nm) on a few-layer graphene (FLG) surface as studied by in situ high temperature transmission electron microscopy.