Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characteriz...Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.展开更多
Multi-walled carbon nanotubes (MWCNTs) were irradiated with focused electron beams in a transmission electron microscope at room temperature. The results showed that carbon nanotubes had no obvious structural damage...Multi-walled carbon nanotubes (MWCNTs) were irradiated with focused electron beams in a transmission electron microscope at room temperature. The results showed that carbon nanotubes had no obvious structural damages but only shell bending under 100 keV electron beam irradiation. However, when the electron energy increased to 200 keV, the nanotubes were damaged and amorphization, pits and gaps were detected. Furthermore, generating of carbon onions and welding between two MWCNTs occurred under 200 keV electron irradiation. It was easy to destroy the MWCNTs as the electron beams exceeded the displacement threshold energy that was calculated to be 83-110 keV. Conversely, the energy of electron beams below the threshold energy was not able to damage the tubes. The damage mechanism is sputtering and atom displacement.展开更多
We have designed and prepared β-cyclodextrin (β-CD)-functionalized multi-walled nanotubes (MWCNTs-g-CD) for the oxidation of cinnamon oil to natural benzaldehyde under aqueous condi- tions. The synergistic effec...We have designed and prepared β-cyclodextrin (β-CD)-functionalized multi-walled nanotubes (MWCNTs-g-CD) for the oxidation of cinnamon oil to natural benzaldehyde under aqueous condi- tions. The synergistic effect of combining MWCNTs with β-CD led to a remarkable increase in the performance of the MWCNTs-g-CD for the catalytic oxidation of cinnamaldehyde, which exhibited 95% cinnamaldehyde conversion and 85% selectivity to natural benzaldehyde with a short reaction time of 10 rain. The MWCNTs-g-CD also exhibited outstanding recyclability with good stability, showing no discernible decrease in their catalytic activity over five reaction cycles.展开更多
Titania-based composite catalysts were prepared through a sol-gel route employing multi-walled carbon nanotubes with different diameters. The materials were characterized using thermogravimetric analysis, nitrogen ads...Titania-based composite catalysts were prepared through a sol-gel route employing multi-walled carbon nanotubes with different diameters. The materials were characterized using thermogravimetric analysis, nitrogen adsorption-desorption isotherm, powder X-ray diffraction, scanning electron microscopy, and diffuse reflectance UV-Vis absorption spectra. The application of the catalysts to photocatalytic degradation of phenol was tested under UV-Vis irradiation. A synergetic effect on phenol removal was observed in case of composite catalysts, which was evaluated in terms of apparent rate constant, total organic carbon removal and photonic efficiency.展开更多
The assembly of layered double hydroxides (LDHs) and multi-walled carbon nanotubes (MWCNTs) nanohybrids was prepared as MWCNTs/LDHs by co-precipitation. The synthesized nanoparticles were characterized by us...The assembly of layered double hydroxides (LDHs) and multi-walled carbon nanotubes (MWCNTs) nanohybrids was prepared as MWCNTs/LDHs by co-precipitation. The synthesized nanoparticles were characterized by using XRD, FT-IR, SEM/EDX, TGA and BET. XRD and SEM studies proved that MWCNTs phases did not enter into the interlayers of LDHs, they dispersed over the LDHs surface homogeneously. BET results showed that MWCNTs/LDHs possessed hierarchically porous nanostructure with large surface area (124.974 m^2/g) and great pore volume (0.604 cm^3/g). Batch experiments were conducted to study the adsorption efficiency of Congo red (CR). It was worthy to note that MWCNTs/LDHs exhibited excellent adsorption performance with the maximum CR adsorption capacity of 595.8 mg/g in weak acidic environment. The adsorption kinetics and isotherm parameters can be well described by the pseudo-second-order and the Langmuir isotherm models, respectively. The thermodynamic studies indicated that the adsorption process was spontaneous and endothermic.展开更多
In this article, we considers the thermodynamics analysis of creeping viscous nanofluid flow in a horizontal ciliated tube under the effects of a uniform magnetic field and porous medium. Moreover, energy analysis is ...In this article, we considers the thermodynamics analysis of creeping viscous nanofluid flow in a horizontal ciliated tube under the effects of a uniform magnetic field and porous medium. Moreover, energy analysis is performed in the presence of an internal heat source and thermal radiation phenomena. The thermal conductivity of base fluid water is strengthened by considering the carbon nanotubes (CNTs). Mathematical formulation operated, results in a set of non-linear coupled partial differential equations. The governed differential system is transformed into an ordinary differential system by considering suitable similarity variables. Exact solutions in the closed form are computed for the temperature, momentum and pressure gradient profiles. In this study, special attention is devoted to the electrical conductivity of the CNTs. Streamlines patterns are also discussed to witness the flow lines for different parameters. Thermodynamics analysis shows that entropy of the current flow system is an increasing function of Brinkmann number, magnetic parameter, nanoparticle concentration parameter and Darcy number.展开更多
A novel sensor for the determination of warfarin based on a simple and sensitive method was developed on multiwalled-carbon-nanotube modified ZnCrFeO4 carbon paste electrodes(MWCNT/ZnCrFeO4/CPEs). Cyclic voltammetry...A novel sensor for the determination of warfarin based on a simple and sensitive method was developed on multiwalled-carbon-nanotube modified ZnCrFeO4 carbon paste electrodes(MWCNT/ZnCrFeO4/CPEs). Cyclic voltammetry, differential pulse voltammetry, chronoamperometry, and electrochemical impedance spectroscopy were used to investigate the electrochemical behavior of warfarin at the chemically modified electrode. According to the results, MWCNT/ZnCrFeO4/CPEs showed high electrocatalytic activity for warfarin oxidation, producing a sharp oxidation peak current at about +0.97 vs Ag/AgCl reference electrode at pH = 4.0. The peak current was linearly dependent on warfarin concentration over the range of 0.02–920.0 μmol/L with a detection limit of 0.003 μmol/L. In addition, chronoamperometry was also used to determine warfarin's catalytic rate constant and diffusion coefficient at MWCNT/ZnCrFeO4/CPEs.展开更多
High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon ...High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid.展开更多
Hydrogen peroxide(H2O2)is a very useful chemical reagent,but the current industrial methods for its production suffer from serious energy consumption problems.Using high-activity and high-selectivity catalysts to elec...Hydrogen peroxide(H2O2)is a very useful chemical reagent,but the current industrial methods for its production suffer from serious energy consumption problems.Using high-activity and high-selectivity catalysts to electrocatalyze the oxygen reduction reaction(ORR)through a two-electron(2e^-)pathway is a very promising route to produce H2O2.In this work,we obtained partially oxidized multi-walled carbon nanotubes(MWCNTs)with controlled structure and composition by oxidation with concentrated sulfate and potassium permanganate at 40℃ for 1 h(O-CNTs-40-1).The outer layers of O-CNTs-40-1 are damaged with defects and oxygen-containing functional groups,while the inner layers are maintained intact.The optimized structure and composition of the partially oxidized MWCNTs ensure that O-CNTs-40-1 possesses both a sufficient number of catalytic sites and good conductivity.The results of rotating ring disk electrode measurements reveal that,among all oxidized MWCNTs,O-CNTs-40-1 shows the greatest improvement in hydrogen peroxide selectivity(from ~ 30% to ~ 50%)and electron transfer number(from ~ 3.4 to ~ 3.0)compared to those of the raw MWCNTs.The results of electrochemical impedance spectroscopy measurements indicate that both the charge-transfer and intrinsic resistances of O-CNTs-40-1 are lower than those of the raw MWCNTs and of the other oxidized MWCNTs.Finally,direct tests of the H2O2 production confirm the greatly improved catalytic activity of O-CNTs-40-1 relative to that of the raw MWCNTs.展开更多
This article studied experimentally the effect of multi-wall carbon nanotubes (MWCNTs) on the thermo physical properties of ionic liquid-based nanofluids. The nanofluids were composed of ionic liquid, 1-ethyl-3- met...This article studied experimentally the effect of multi-wall carbon nanotubes (MWCNTs) on the thermo physical properties of ionic liquid-based nanofluids. The nanofluids were composed of ionic liquid, 1-ethyl-3- methylimidazolium diethylphosphate [EMIM][DEP], or its aqueous solution[EMIM][DEP](1) + H20(2) and MWCNTs without any surfactants. The thermal conductivity, viscosity and density of the nanofluids were mea- sured experimentally. The effects of the mass fraction of MWCNTs, temperature and the mole fraction of water on the thermo physical properties of nanofluids were studied. Results show that the thermal conductivity of nanofluids increases within the range of 1.3%-9.7% compared to their base liquids, and have a well linear depen- dence on temperature. The viscosity and density of the nanofluids exhibit a remarkable increase compared with those of the base liquids. Finally, the correlation of the effective thermal conductivity and viscosity of the nanofluids was made using the models in the literatures.展开更多
As a preliminary investigation towards obtaining carbon nanotube composite adsorbent for CO2 capture, in this study CO2 adsorption performance of three commercial carbon nanotubes (CNTs) one single-walled carbon nan...As a preliminary investigation towards obtaining carbon nanotube composite adsorbent for CO2 capture, in this study CO2 adsorption performance of three commercial carbon nanotubes (CNTs) one single-walled carbon nanotubes (SWCNTs), and two (2) different multi-walled carbon nanotubes (referred to as A-MWCNTs and B-MWCNTs) were evaluated and compared. The purpose of this study was to compare the different types of CNTs and select the best to serve as the solid anchor in the development of a hydrophobic composite adsorbent material for CO2 capture. The N2 physi- sorption of the CNTs was conducted to determine their surface area, pore volume and pore size. In addition, morphology and purity of the CNTs were checked with Transmission Electron Microscopy and Raman Spectroscopy, respectively. The CO2 adsorption capacity of the CNTs was evaluated using Thermo-gravimetric analysis (TGA) at 1.1 bar, at operating temperature ranged from 25 to 55 ~C and at different CO2 feed flow rates, in order to evaluate the effects of these variables on the CO2 adsorption capacity. The results of CO2 adsorption with the TGA show that CO2 adsorption capacity for both SWCNTs and MWCNTs was the highest at 25 ~C. Changing the CO2 flowrates had no significant effect on the adsorption capacity of MWCNTs, but decreasing the CO2 flow rate resulted in the enhancement of the CO2 adsorption capacity of SWCNTs. Overall, it was found that the SWCNTs displayed the highest CO2 adsorption capacity (29.97 gCO2/kg ad- sorbent) when compared to the MWCNTs (12.09 gCO2/kg adsorbent), indicating a 150% increase in adsorption capacity over MWCNTs.展开更多
A simple and green approach to synthesize highly active electro-catalysts for methanol oxi- dation reaction (MOR) without using any organic agents is described. Pt nanoparticles are directly deposited on the pre-cle...A simple and green approach to synthesize highly active electro-catalysts for methanol oxi- dation reaction (MOR) without using any organic agents is described. Pt nanoparticles are directly deposited on the pre-cleaned and pre-oxidized multiwall carbon nanotubes (MWC- NTs) from Pt salt by using CO as the reductant. MOR activity has been characterized by both cyclic voltammetry and chronoamperometry, the current density and mass specific current at the peak potential (ca. 0.9 V vs. RHE) reaches 11.6 mA/cm^2 and 860 mA/mgpt, respectively. After electro-deposition of Ru onto the Pt/MWCNTs surface, the catalysts show steady state mass specific current of 20 and 80 mA/mgpt at 0.5 and 0.6 V, respectively.展开更多
Cu2O and Cul were supported on multiwalled carbon nanotubes (MWCNTs) using a wet impregna- tion method, and the resulting materials were fully characterized by powder X-ray diffraction, Fourier transform infrared sp...Cu2O and Cul were supported on multiwalled carbon nanotubes (MWCNTs) using a wet impregna- tion method, and the resulting materials were fully characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy, transmission electron microscopy, and temperature-programmed desorption with ammonia analysis. The results of these experiments revealed that Cu2O and CuI were deposited on the MWCNTs in the cubic and γ phases, respectively. These results also showed that the Cu-containing MWCNTs exhibited weak to strong electron-accepting (Lewis acidic) properties. The catalytic activities of these materials were studied for the synthesis of biologically significant N-(pyridin-2-yl)benzamides via the oxidative amidation of aryl aldehydes with 2-aminopyridines. The yields of the products were in the range 50%-95% with 100% selectivity. Notably, the CuI/MWCNT catalyst was much more effective than the Cu2O/MWCNT catalyst with respect to the isolated yield of the product, although the latter of these two catalysts exhibited much better recyclability. A preferential interaction was observed between the polar nature of the acid-activated MWCNTs and the ionic Cu2O compared with covalent CuL The differences in these interactions had a significant impact on the rate of the nucleophilic attack of the amino group of 2-aminopyridine substrate on the carbonyl group of the aryl aldehyde.展开更多
Titania coating of multi wall carbon nano tube(MWCNT) was carried out by sol-gel method in order to improve its photo catalytic properties.The effect of MWCNT/TiO_2 mass to volume ratio on adsorption ability,reaction ...Titania coating of multi wall carbon nano tube(MWCNT) was carried out by sol-gel method in order to improve its photo catalytic properties.The effect of MWCNT/TiO_2 mass to volume ratio on adsorption ability,reaction rate and photo-catalytic removal efficiency of dibenzothiophene(DBT) from n-hexane solution was investigated using a 9 W UV lamp.The results show that the addition of nanotubes improves the photo-catalytic properties of TiO_2 by two factors;however,the DBT removal rate versus MWCNT content is found to follow a bimodal pattern.Two factors are observed to affect the removal rate of DBT and produce two optimum values for MWCNT content.First,large quantities of MWCNTs prevent light absorption by the solution and decrease removal efficiency.By contrast,a low dosage of MWCNT causes recombination of the electron holes,which also decreases the DBT removal rate.The optimum MWCNT contents in the composite are found to be 0.25 g and 0.75 g MWCNT per 80 m L of sol.展开更多
The adsorption behavior of multiwalled carbon nanotubes (MWNTs) toward heavy elements has been investigated systemically, and a new method has been developed for the determination of trace elements in water samples ...The adsorption behavior of multiwalled carbon nanotubes (MWNTs) toward heavy elements has been investigated systemically, and a new method has been developed for the determination of trace elements in water samples based on preconcentration with mini-column packed with MWNTs prior to its determination by flame atomic absorption spectrometry (FAAS) The recommended parameters of proposed method influencing the preconcentration of the analytes, such as pH of the sample, sample flow rate and volume, elute solution and interfering ions, have been used. Under the optimized conditions, the calibration graphs were linear with the correlation coefficient range 0.9981-0.9995. According to the results, the metals were found 0.019-0.051, 0.011-0.031, 0.00-0.081, 0.00-0.0002, 0.007-0.0925, 0.00-0.0104 μg/L in water samples for Pb, Mn, Zn, Cd, Fe, Cu respectively. The percentage relative standard deviation (%RSD) for five replicate samples were 〈 5% in all cases. The method has been successfully applied to the determination of trace elements in some environmental samples with satisfactory results.展开更多
Modified multi-walled carbon nanotubes(MWCNTs) were used as adsorbents for removal of diclofenac. The reaction conditions were examined. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models were app...Modified multi-walled carbon nanotubes(MWCNTs) were used as adsorbents for removal of diclofenac. The reaction conditions were examined. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models were applied to determine appropriate equilibrium expression. The results show that the experimental data fit the Freundlich equation well. Thermodynamic parameters show that the adsorption process is spontaneous and exothermic. The kinetic study indicates that the adsorption of diclofenac can be well described with the pseudo-second-order kinetic model and the process is controlled by multiple steps.展开更多
In this research, synthesis of magnesium oxide-multi walled carbon nanotube (MgO/MWCNTs) nanocomposite is reported using sol-gel method in which magnesium nitrate is added to aqueous solution. The structure of MWCNT...In this research, synthesis of magnesium oxide-multi walled carbon nanotube (MgO/MWCNTs) nanocomposite is reported using sol-gel method in which magnesium nitrate is added to aqueous solution. The structure of MWCNTs and MgO/MWCNTs composite has been characterized by analyzing the X-ray diffraction pattern (XRD), Fourier Transform Infrared (FT-IR) spectra and Scanning Electron Microscopy (SEM) images. Experimental results indicate that the surface of purified MWCNTs sample is covered homogenously by a layered of MgO nanoparticles.展开更多
In this paper, adsorption and regeneration characteristics of multi-walled carbon nanotubes (MWNTs) used as adsorbent were investigated for the removal of 1,3-beuzenediol (BDO) from water by the supercritieal wat...In this paper, adsorption and regeneration characteristics of multi-walled carbon nanotubes (MWNTs) used as adsorbent were investigated for the removal of 1,3-beuzenediol (BDO) from water by the supercritieal water (SCW) technique. FFIR, XPS, SEM and dispersion stability tests were used to characterize the structure and surface morphology of CNTs. The results showed that CNTs surfaces were slightly activated and strongly etched in supercritieal water system. The adsorption capacity of SCW-treated CNTs was higher than that of raw CNTs. The adsorbed amounts for treated CNTs and raw CNTs samples at the same initial concentration of 60 mg/L were ca. 16.42 and 7.30 mg/g, respectively. The BDO adsorption of treated CNTs was due to the physical adsorption. The experimental data fit Freundlich isotherm model better than Langmuir one. The loaded adsorbent could be efficiently desorbed and regenerated by SCW technique. Therefore, SCW is a promising and environmentally friendly technique for the improvement of adsorption and regeneration of CNTs.展开更多
The method of preparing the multi-walled carbon nanotubes (MWNTs)-polyacrylonitriIe (PAN) composite fibers is described and the effects of draw ratio on the mechanical properties of CNT/PAN fibers have also been discu...The method of preparing the multi-walled carbon nanotubes (MWNTs)-polyacrylonitriIe (PAN) composite fibers is described and the effects of draw ratio on the mechanical properties of CNT/PAN fibers have also been discussed. The results show that the degrees of MWNTs dispersion in the polymer matrix have much effect on the mechanical properties.展开更多
基金Projects(21107032,51073072)supported by the National Natural Science Foundation of ChinaProjects(Y406469,Y4110555,Y4100745)supported by Natural Science Foundation of Zhejiang Province,ChinaProjects(2011AY1048-5,2011AY1030)supported by the Science Foundation of Jiaxing Science and Technology Bureau,China
文摘Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.
基金Project(91026018)supported by the National Natural Science Foundation of ChinaProject(20110111110015)supported by the Doctoral Fund of Ministry of Education of China
文摘Multi-walled carbon nanotubes (MWCNTs) were irradiated with focused electron beams in a transmission electron microscope at room temperature. The results showed that carbon nanotubes had no obvious structural damages but only shell bending under 100 keV electron beam irradiation. However, when the electron energy increased to 200 keV, the nanotubes were damaged and amorphization, pits and gaps were detected. Furthermore, generating of carbon onions and welding between two MWCNTs occurred under 200 keV electron irradiation. It was easy to destroy the MWCNTs as the electron beams exceeded the displacement threshold energy that was calculated to be 83-110 keV. Conversely, the energy of electron beams below the threshold energy was not able to damage the tubes. The damage mechanism is sputtering and atom displacement.
基金supported by the National Natural Science Foundation of China (21376279, 21276102, 21425627)Guangdong Technology Research Center for Synthesis and Separation of Thermosensitive Chemicals (2015B090903061)+1 种基金the Fundamental Research Funds for the Central Universities (14lgpy28)Guangzhou Science and Technology Plan Projects (2014J4100125)~~
文摘We have designed and prepared β-cyclodextrin (β-CD)-functionalized multi-walled nanotubes (MWCNTs-g-CD) for the oxidation of cinnamon oil to natural benzaldehyde under aqueous condi- tions. The synergistic effect of combining MWCNTs with β-CD led to a remarkable increase in the performance of the MWCNTs-g-CD for the catalytic oxidation of cinnamaldehyde, which exhibited 95% cinnamaldehyde conversion and 85% selectivity to natural benzaldehyde with a short reaction time of 10 rain. The MWCNTs-g-CD also exhibited outstanding recyclability with good stability, showing no discernible decrease in their catalytic activity over five reaction cycles.
基金ACKNOWLEDGMENT This work was supported Science Foundation of China by the National Natural (No.20703042).
文摘Titania-based composite catalysts were prepared through a sol-gel route employing multi-walled carbon nanotubes with different diameters. The materials were characterized using thermogravimetric analysis, nitrogen adsorption-desorption isotherm, powder X-ray diffraction, scanning electron microscopy, and diffuse reflectance UV-Vis absorption spectra. The application of the catalysts to photocatalytic degradation of phenol was tested under UV-Vis irradiation. A synergetic effect on phenol removal was observed in case of composite catalysts, which was evaluated in terms of apparent rate constant, total organic carbon removal and photonic efficiency.
基金Project(21476269)supported by the National Natural Science Foundation of ChinaProject(14JJ2014)supported by Natural Science Foundation of Hunan Province,China
文摘The assembly of layered double hydroxides (LDHs) and multi-walled carbon nanotubes (MWCNTs) nanohybrids was prepared as MWCNTs/LDHs by co-precipitation. The synthesized nanoparticles were characterized by using XRD, FT-IR, SEM/EDX, TGA and BET. XRD and SEM studies proved that MWCNTs phases did not enter into the interlayers of LDHs, they dispersed over the LDHs surface homogeneously. BET results showed that MWCNTs/LDHs possessed hierarchically porous nanostructure with large surface area (124.974 m^2/g) and great pore volume (0.604 cm^3/g). Batch experiments were conducted to study the adsorption efficiency of Congo red (CR). It was worthy to note that MWCNTs/LDHs exhibited excellent adsorption performance with the maximum CR adsorption capacity of 595.8 mg/g in weak acidic environment. The adsorption kinetics and isotherm parameters can be well described by the pseudo-second-order and the Langmuir isotherm models, respectively. The thermodynamic studies indicated that the adsorption process was spontaneous and endothermic.
文摘In this article, we considers the thermodynamics analysis of creeping viscous nanofluid flow in a horizontal ciliated tube under the effects of a uniform magnetic field and porous medium. Moreover, energy analysis is performed in the presence of an internal heat source and thermal radiation phenomena. The thermal conductivity of base fluid water is strengthened by considering the carbon nanotubes (CNTs). Mathematical formulation operated, results in a set of non-linear coupled partial differential equations. The governed differential system is transformed into an ordinary differential system by considering suitable similarity variables. Exact solutions in the closed form are computed for the temperature, momentum and pressure gradient profiles. In this study, special attention is devoted to the electrical conductivity of the CNTs. Streamlines patterns are also discussed to witness the flow lines for different parameters. Thermodynamics analysis shows that entropy of the current flow system is an increasing function of Brinkmann number, magnetic parameter, nanoparticle concentration parameter and Darcy number.
文摘A novel sensor for the determination of warfarin based on a simple and sensitive method was developed on multiwalled-carbon-nanotube modified ZnCrFeO4 carbon paste electrodes(MWCNT/ZnCrFeO4/CPEs). Cyclic voltammetry, differential pulse voltammetry, chronoamperometry, and electrochemical impedance spectroscopy were used to investigate the electrochemical behavior of warfarin at the chemically modified electrode. According to the results, MWCNT/ZnCrFeO4/CPEs showed high electrocatalytic activity for warfarin oxidation, producing a sharp oxidation peak current at about +0.97 vs Ag/AgCl reference electrode at pH = 4.0. The peak current was linearly dependent on warfarin concentration over the range of 0.02–920.0 μmol/L with a detection limit of 0.003 μmol/L. In addition, chronoamperometry was also used to determine warfarin's catalytic rate constant and diffusion coefficient at MWCNT/ZnCrFeO4/CPEs.
基金Project(NRF-2014R1A1A4A03005148)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology,Korea
文摘High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid.
基金supported by the National Natural Science Foundation of China(21576299,21576300)Guangzhou Science and Technology Project(201607010104,201707010079)+3 种基金Science and Technology Planning Project of Guangdong Province(2017A050501009)the National Key Research and Development Program of China(2016YFB0101204)Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program(2016TQ03N322)the fundamental Research Funds for Central Universities(17lgzd14)~~
文摘Hydrogen peroxide(H2O2)is a very useful chemical reagent,but the current industrial methods for its production suffer from serious energy consumption problems.Using high-activity and high-selectivity catalysts to electrocatalyze the oxygen reduction reaction(ORR)through a two-electron(2e^-)pathway is a very promising route to produce H2O2.In this work,we obtained partially oxidized multi-walled carbon nanotubes(MWCNTs)with controlled structure and composition by oxidation with concentrated sulfate and potassium permanganate at 40℃ for 1 h(O-CNTs-40-1).The outer layers of O-CNTs-40-1 are damaged with defects and oxygen-containing functional groups,while the inner layers are maintained intact.The optimized structure and composition of the partially oxidized MWCNTs ensure that O-CNTs-40-1 possesses both a sufficient number of catalytic sites and good conductivity.The results of rotating ring disk electrode measurements reveal that,among all oxidized MWCNTs,O-CNTs-40-1 shows the greatest improvement in hydrogen peroxide selectivity(from ~ 30% to ~ 50%)and electron transfer number(from ~ 3.4 to ~ 3.0)compared to those of the raw MWCNTs.The results of electrochemical impedance spectroscopy measurements indicate that both the charge-transfer and intrinsic resistances of O-CNTs-40-1 are lower than those of the raw MWCNTs and of the other oxidized MWCNTs.Finally,direct tests of the H2O2 production confirm the greatly improved catalytic activity of O-CNTs-40-1 relative to that of the raw MWCNTs.
基金Supported by the National Natural Science Foundation of China(51376036)
文摘This article studied experimentally the effect of multi-wall carbon nanotubes (MWCNTs) on the thermo physical properties of ionic liquid-based nanofluids. The nanofluids were composed of ionic liquid, 1-ethyl-3- methylimidazolium diethylphosphate [EMIM][DEP], or its aqueous solution[EMIM][DEP](1) + H20(2) and MWCNTs without any surfactants. The thermal conductivity, viscosity and density of the nanofluids were mea- sured experimentally. The effects of the mass fraction of MWCNTs, temperature and the mole fraction of water on the thermo physical properties of nanofluids were studied. Results show that the thermal conductivity of nanofluids increases within the range of 1.3%-9.7% compared to their base liquids, and have a well linear depen- dence on temperature. The viscosity and density of the nanofluids exhibit a remarkable increase compared with those of the base liquids. Finally, the correlation of the effective thermal conductivity and viscosity of the nanofluids was made using the models in the literatures.
文摘As a preliminary investigation towards obtaining carbon nanotube composite adsorbent for CO2 capture, in this study CO2 adsorption performance of three commercial carbon nanotubes (CNTs) one single-walled carbon nanotubes (SWCNTs), and two (2) different multi-walled carbon nanotubes (referred to as A-MWCNTs and B-MWCNTs) were evaluated and compared. The purpose of this study was to compare the different types of CNTs and select the best to serve as the solid anchor in the development of a hydrophobic composite adsorbent material for CO2 capture. The N2 physi- sorption of the CNTs was conducted to determine their surface area, pore volume and pore size. In addition, morphology and purity of the CNTs were checked with Transmission Electron Microscopy and Raman Spectroscopy, respectively. The CO2 adsorption capacity of the CNTs was evaluated using Thermo-gravimetric analysis (TGA) at 1.1 bar, at operating temperature ranged from 25 to 55 ~C and at different CO2 feed flow rates, in order to evaluate the effects of these variables on the CO2 adsorption capacity. The results of CO2 adsorption with the TGA show that CO2 adsorption capacity for both SWCNTs and MWCNTs was the highest at 25 ~C. Changing the CO2 flowrates had no significant effect on the adsorption capacity of MWCNTs, but decreasing the CO2 flow rate resulted in the enhancement of the CO2 adsorption capacity of SWCNTs. Overall, it was found that the SWCNTs displayed the highest CO2 adsorption capacity (29.97 gCO2/kg ad- sorbent) when compared to the MWCNTs (12.09 gCO2/kg adsorbent), indicating a 150% increase in adsorption capacity over MWCNTs.
基金ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China (No.21273215), National Instrumentation Program (No.2011YQ03012416), and 973 Program from the Ministry of Science and Technology of China (No.2010CB923302).
文摘A simple and green approach to synthesize highly active electro-catalysts for methanol oxi- dation reaction (MOR) without using any organic agents is described. Pt nanoparticles are directly deposited on the pre-cleaned and pre-oxidized multiwall carbon nanotubes (MWC- NTs) from Pt salt by using CO as the reductant. MOR activity has been characterized by both cyclic voltammetry and chronoamperometry, the current density and mass specific current at the peak potential (ca. 0.9 V vs. RHE) reaches 11.6 mA/cm^2 and 860 mA/mgpt, respectively. After electro-deposition of Ru onto the Pt/MWCNTs surface, the catalysts show steady state mass specific current of 20 and 80 mA/mgpt at 0.5 and 0.6 V, respectively.
基金DST-SERB for the financial support for this research work(Project number:SERB/F/3690/2013-14)
文摘Cu2O and Cul were supported on multiwalled carbon nanotubes (MWCNTs) using a wet impregna- tion method, and the resulting materials were fully characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy, transmission electron microscopy, and temperature-programmed desorption with ammonia analysis. The results of these experiments revealed that Cu2O and CuI were deposited on the MWCNTs in the cubic and γ phases, respectively. These results also showed that the Cu-containing MWCNTs exhibited weak to strong electron-accepting (Lewis acidic) properties. The catalytic activities of these materials were studied for the synthesis of biologically significant N-(pyridin-2-yl)benzamides via the oxidative amidation of aryl aldehydes with 2-aminopyridines. The yields of the products were in the range 50%-95% with 100% selectivity. Notably, the CuI/MWCNT catalyst was much more effective than the Cu2O/MWCNT catalyst with respect to the isolated yield of the product, although the latter of these two catalysts exhibited much better recyclability. A preferential interaction was observed between the polar nature of the acid-activated MWCNTs and the ionic Cu2O compared with covalent CuL The differences in these interactions had a significant impact on the rate of the nucleophilic attack of the amino group of 2-aminopyridine substrate on the carbonyl group of the aryl aldehyde.
文摘Titania coating of multi wall carbon nano tube(MWCNT) was carried out by sol-gel method in order to improve its photo catalytic properties.The effect of MWCNT/TiO_2 mass to volume ratio on adsorption ability,reaction rate and photo-catalytic removal efficiency of dibenzothiophene(DBT) from n-hexane solution was investigated using a 9 W UV lamp.The results show that the addition of nanotubes improves the photo-catalytic properties of TiO_2 by two factors;however,the DBT removal rate versus MWCNT content is found to follow a bimodal pattern.Two factors are observed to affect the removal rate of DBT and produce two optimum values for MWCNT content.First,large quantities of MWCNTs prevent light absorption by the solution and decrease removal efficiency.By contrast,a low dosage of MWCNT causes recombination of the electron holes,which also decreases the DBT removal rate.The optimum MWCNT contents in the composite are found to be 0.25 g and 0.75 g MWCNT per 80 m L of sol.
文摘The adsorption behavior of multiwalled carbon nanotubes (MWNTs) toward heavy elements has been investigated systemically, and a new method has been developed for the determination of trace elements in water samples based on preconcentration with mini-column packed with MWNTs prior to its determination by flame atomic absorption spectrometry (FAAS) The recommended parameters of proposed method influencing the preconcentration of the analytes, such as pH of the sample, sample flow rate and volume, elute solution and interfering ions, have been used. Under the optimized conditions, the calibration graphs were linear with the correlation coefficient range 0.9981-0.9995. According to the results, the metals were found 0.019-0.051, 0.011-0.031, 0.00-0.081, 0.00-0.0002, 0.007-0.0925, 0.00-0.0104 μg/L in water samples for Pb, Mn, Zn, Cd, Fe, Cu respectively. The percentage relative standard deviation (%RSD) for five replicate samples were 〈 5% in all cases. The method has been successfully applied to the determination of trace elements in some environmental samples with satisfactory results.
基金Supported by the National Natural Science Foundation of China(50878014,51178022)
文摘Modified multi-walled carbon nanotubes(MWCNTs) were used as adsorbents for removal of diclofenac. The reaction conditions were examined. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models were applied to determine appropriate equilibrium expression. The results show that the experimental data fit the Freundlich equation well. Thermodynamic parameters show that the adsorption process is spontaneous and exothermic. The kinetic study indicates that the adsorption of diclofenac can be well described with the pseudo-second-order kinetic model and the process is controlled by multiple steps.
文摘In this research, synthesis of magnesium oxide-multi walled carbon nanotube (MgO/MWCNTs) nanocomposite is reported using sol-gel method in which magnesium nitrate is added to aqueous solution. The structure of MWCNTs and MgO/MWCNTs composite has been characterized by analyzing the X-ray diffraction pattern (XRD), Fourier Transform Infrared (FT-IR) spectra and Scanning Electron Microscopy (SEM) images. Experimental results indicate that the surface of purified MWCNTs sample is covered homogenously by a layered of MgO nanoparticles.
基金Sponsored by the Project from Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No. HIT.NSRIF.2008.05)
文摘In this paper, adsorption and regeneration characteristics of multi-walled carbon nanotubes (MWNTs) used as adsorbent were investigated for the removal of 1,3-beuzenediol (BDO) from water by the supercritieal water (SCW) technique. FFIR, XPS, SEM and dispersion stability tests were used to characterize the structure and surface morphology of CNTs. The results showed that CNTs surfaces were slightly activated and strongly etched in supercritieal water system. The adsorption capacity of SCW-treated CNTs was higher than that of raw CNTs. The adsorbed amounts for treated CNTs and raw CNTs samples at the same initial concentration of 60 mg/L were ca. 16.42 and 7.30 mg/g, respectively. The BDO adsorption of treated CNTs was due to the physical adsorption. The experimental data fit Freundlich isotherm model better than Langmuir one. The loaded adsorbent could be efficiently desorbed and regenerated by SCW technique. Therefore, SCW is a promising and environmentally friendly technique for the improvement of adsorption and regeneration of CNTs.
文摘The method of preparing the multi-walled carbon nanotubes (MWNTs)-polyacrylonitriIe (PAN) composite fibers is described and the effects of draw ratio on the mechanical properties of CNT/PAN fibers have also been discussed. The results show that the degrees of MWNTs dispersion in the polymer matrix have much effect on the mechanical properties.