[Objective] The aim was to construct the fusion expression vector of polyphosphate kinase(PPK) and green fluorescent protein(GFP) genes.[Method] In this study,the primers were designed based on PPK gene sequence(...[Objective] The aim was to construct the fusion expression vector of polyphosphate kinase(PPK) and green fluorescent protein(GFP) genes.[Method] In this study,the primers were designed based on PPK gene sequence(L03719) of E.coli DH5α in Genbank.Genomic DNA of E.coli DH 5α was extracted as template for the amplification of PPK gene by PCR method.By using In-Fusion@ HD Cloning Kit,the PPK gene was directionally cloned into NcoI site of the pCAMBIA1302 vector.[Result] Sequencing results showed that the 2.0 kb long fragment of PPK gene was inserted into the plant-based expression vector pCAMBIA1302 in front of GFP gene.[Conclusion] The fusion expression vector of PPK and GFP genes were successfully constructed.展开更多
Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K) plays an important role in signal transduction in animal cellsby phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4)...Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K) plays an important role in signal transduction in animal cellsby phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4). Both IP3 and IP4 arecritical second messengers which regulate calcium (Ca2+) homeostasis. Mammalian IP3Ks are involved in many biologicalprocesses, including brain development, memory, learning and so on. It is widely reported that Ca2+ is a canonicalsecond messenger in higher plants. Therefore, plant IP3K should also play a crucial role in plant development. Recently,we reported the identification of plant IP3K gene (AtIpk2β/AtIP3K) from Arabidopsis thaliana and its characterization.Here, we summarize the molecular cloning, biochemical properties and biological functions of IP3Ks from animal, yeastand plant. This review also discusses potential functions of IP3Ks in signaling crosstalk, inositol phosphate metabolism,gene transcriptional control and so on.展开更多
Protein-protein interactions represent an important mechanism for posttranslational modifications of protein expression and function.In brain cells,surface-expressed and membrane-bound neurotransmitter receptors are c...Protein-protein interactions represent an important mechanism for posttranslational modifications of protein expression and function.In brain cells,surface-expressed and membrane-bound neurotransmitter receptors are common proteins that undergo dynamic protein-protein interactions between their intracellular domains and submembranous regulatory proteins.Recently,the Gφi/o -coupled muscarinic M4 receptor(M4R)has been revealed to be one of these receptors.Through direct interaction with the intracellular loops or C-terminal tails of M4Rs,M4R interacting proteins(M4RIPs)vigorously regulate the efficacy of M4R signaling.A synapse-enriched protein kinase,Ca2+/calmodulin-dependent protein kinase II (CaMKII),exemplifies a prototype model of M4RIPs,and is capable of binding to the second intracellular loop of M4Rs. Through an activity-and phosphorylation-dependent mechanism,CaMKII potentiates the M4R/Gφi/o-mediated inhibition of M4R efficacy in inhibiting adenylyl cyclase and cAMP production.In striatal neurons where M4Rs are most abundantly expressed,M4RIPs dynamically control M4R activity to maintain a proper cholinergic tone in these neurons.This is critical for maintaining the acetylcholine-dopamine balance in the basal ganglia,which determines the behavioral responsiveness to dopamine stimulation by psychostimulants.展开更多
基金Supported by National Natural Science Foundation of China(31070451)Qianjiang Talent Project of Zhejiang Province(2009R10016)Zhejiang Provincial Natural Science Foundation of China(Y5110067)~~
文摘[Objective] The aim was to construct the fusion expression vector of polyphosphate kinase(PPK) and green fluorescent protein(GFP) genes.[Method] In this study,the primers were designed based on PPK gene sequence(L03719) of E.coli DH5α in Genbank.Genomic DNA of E.coli DH 5α was extracted as template for the amplification of PPK gene by PCR method.By using In-Fusion@ HD Cloning Kit,the PPK gene was directionally cloned into NcoI site of the pCAMBIA1302 vector.[Result] Sequencing results showed that the 2.0 kb long fragment of PPK gene was inserted into the plant-based expression vector pCAMBIA1302 in front of GFP gene.[Conclusion] The fusion expression vector of PPK and GFP genes were successfully constructed.
基金This work was supported by grants from the National Natural Science Foundation of China(No.30370142)the.National Special Key Project on Functional Genomics and Biochip of China(No.2002AA2Z1002)the Project sponsored by the Scientific Research Foundation for the Returned Oversea Chinese Scholars,State Education Ministry.
文摘Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K) plays an important role in signal transduction in animal cellsby phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4). Both IP3 and IP4 arecritical second messengers which regulate calcium (Ca2+) homeostasis. Mammalian IP3Ks are involved in many biologicalprocesses, including brain development, memory, learning and so on. It is widely reported that Ca2+ is a canonicalsecond messenger in higher plants. Therefore, plant IP3K should also play a crucial role in plant development. Recently,we reported the identification of plant IP3K gene (AtIpk2β/AtIP3K) from Arabidopsis thaliana and its characterization.Here, we summarize the molecular cloning, biochemical properties and biological functions of IP3Ks from animal, yeastand plant. This review also discusses potential functions of IP3Ks in signaling crosstalk, inositol phosphate metabolism,gene transcriptional control and so on.
基金supported by thegrants from the Saint Luke’s Hospital Foundation(Kansas City,MO,USA)the National Institute of Health(Bethesda,MD,USA)(No.R01-DA010355-16,R01-MH061469-10)
文摘Protein-protein interactions represent an important mechanism for posttranslational modifications of protein expression and function.In brain cells,surface-expressed and membrane-bound neurotransmitter receptors are common proteins that undergo dynamic protein-protein interactions between their intracellular domains and submembranous regulatory proteins.Recently,the Gφi/o -coupled muscarinic M4 receptor(M4R)has been revealed to be one of these receptors.Through direct interaction with the intracellular loops or C-terminal tails of M4Rs,M4R interacting proteins(M4RIPs)vigorously regulate the efficacy of M4R signaling.A synapse-enriched protein kinase,Ca2+/calmodulin-dependent protein kinase II (CaMKII),exemplifies a prototype model of M4RIPs,and is capable of binding to the second intracellular loop of M4Rs. Through an activity-and phosphorylation-dependent mechanism,CaMKII potentiates the M4R/Gφi/o-mediated inhibition of M4R efficacy in inhibiting adenylyl cyclase and cAMP production.In striatal neurons where M4Rs are most abundantly expressed,M4RIPs dynamically control M4R activity to maintain a proper cholinergic tone in these neurons.This is critical for maintaining the acetylcholine-dopamine balance in the basal ganglia,which determines the behavioral responsiveness to dopamine stimulation by psychostimulants.