期刊文献+
共找到6,149篇文章
< 1 2 250 >
每页显示 20 50 100
基于BP神经网络的土地利用智能分类识别与雨洪风险模拟 被引量:1
1
作者 姜艳波 徐宁伟 +2 位作者 陈泰熙 秦安臣 黄大庄 《河北大学学报(自然科学版)》 CAS 北大核心 2024年第2期208-215,共8页
土地利用分类数据的精度对雨洪风险淹没模拟研究具有重要影响.土地利用分类中不同地物之间存在复杂的非线性关系,为提高土地分类数据的精度,本研究引入具有非线性映射能力的BP神经网络模型,提出了一种基于深度学习的遥感影像土地利用分... 土地利用分类数据的精度对雨洪风险淹没模拟研究具有重要影响.土地利用分类中不同地物之间存在复杂的非线性关系,为提高土地分类数据的精度,本研究引入具有非线性映射能力的BP神经网络模型,提出了一种基于深度学习的遥感影像土地利用分类方法.选取野三坡风景名胜区GF-2遥感影像数据,对该影像进行多尺度分割.同时将能够反映土地利用信息的光谱数据和DEM数据、坡度数据,作为输入层神经元,将土地利用类型作为输出层神经元,归一化处理后进行迭代训练,构建了基于BP神经网络的土地利用分类模型.该模型的分类总体精度达到91%,Kappa系数为0.890 6.基于该模型的识别结果,利用水文模型和ArcGIS空间分析工具,模拟并分析野三坡景区百年一遇的极端降水事件造成的雨洪淹没区,并提出应对雨洪灾害的相关策略. 展开更多
关键词 BP神经网络 土地利用分类 机器学习 雨洪风险 野三坡风景名胜区
下载PDF
基于残差神经网络的鸡蛋分类识别研究 被引量:1
2
作者 梁旭 王玲 赵书涵 《河南农业大学学报》 CAS CSCD 北大核心 2024年第3期456-466,共11页
【目的】探究残差神经网络(residual neural network,ResNet)对不同种类鸡蛋的分类效果,明确深度学习应用存在智能鸡蛋巡检装置的可行性,为家禽养殖智能化进程提供新思路,并为鸡蛋分类研究提供数据支撑。【方法】在鸡舍实地取样,采用自... 【目的】探究残差神经网络(residual neural network,ResNet)对不同种类鸡蛋的分类效果,明确深度学习应用存在智能鸡蛋巡检装置的可行性,为家禽养殖智能化进程提供新思路,并为鸡蛋分类研究提供数据支撑。【方法】在鸡舍实地取样,采用自适应矩估计优化器(adaptive moment estimation,Adam)以微调最后1层、微调所有层和重新训练所有层3种迁移学习策略分别训练,并通过调整模型权重参数及改变学习率的方式训练出最佳分类模型。【结果】得到识别准确率高达98.971%的鸡蛋分类模型。计算出模型在数据集上的各类评估指标,并借助混淆矩阵及语义特征降维可视化,分析出鸡蛋分类识别中易被误判的类别及语义。该模型部署后实时性良好,满足实际需求。【结论】鸡蛋的分类识别中光照条件是关键影响因素,应尽可能使鸡舍光照稳定均衡。针对6类鸡蛋,微调所有层并调整学习率参数为0.6,可得最佳模型。其在鸡舍场景下分类效果优良,尤其是颜色语义,应用于智能鸡蛋巡检装置,可有效降低人力成本。后续研究中应注重畸形蛋及软壳蛋的记录,为进一步优化提供数据支撑。 展开更多
关键词 鸡蛋分类 家禽养殖 残差神经网络 学习率 智慧农业 迁移学习
下载PDF
基于图卷积神经网络的节点分类方法研究综述 被引量:3
3
作者 张丽英 孙海航 +1 位作者 孙玉发 石兵波 《计算机科学》 CSCD 北大核心 2024年第4期95-105,共11页
节点分类任务是图领域中的重要研究工作之一。近年来随着图卷积神经网络研究工作的不断深入,基于图卷积神经网络的节点分类研究及其应用都取得了重大进展。图卷积神经网络是基于卷积发展出的一类图神经网络,能处理图数据且具有卷积神经... 节点分类任务是图领域中的重要研究工作之一。近年来随着图卷积神经网络研究工作的不断深入,基于图卷积神经网络的节点分类研究及其应用都取得了重大进展。图卷积神经网络是基于卷积发展出的一类图神经网络,能处理图数据且具有卷积神经网络的优点,已成为图节点分类方法中最活跃的一个研究分支。对基于图卷积神经网络的节点分类方法的研究进展进行综述,首先介绍图的相关概念、节点分类的任务定义和常用的图数据集;然后探讨两类经典图卷积神经网络——谱域和空间域图卷积神经网络,以及图卷积神经网络在节点分类领域面临的挑战;之后从模型和数据两个视角分析图卷积神经网络在节点分类任务中的研究成果和未解决的问题;最后对基于图卷积神经网络的节点分类研究方向进行展望,并总结全文。 展开更多
关键词 图数据 节点分类 神经网络 图卷积神经网络
下载PDF
基于双节点-双边图神经网络的茶叶病害分类方法 被引量:1
4
作者 张艳 车迅 +2 位作者 汪芃 汪玉凤 胡根生 《农业机械学报》 EI CAS CSCD 北大核心 2024年第3期252-262,共11页
传统茶叶病害分类主要依赖人工方法,此类方法费工费时,同时茶叶病害样本较少使得现有的机器学习方法的模型训练不充分,病害分类准确率不够高。针对茶炭疽病、茶黑煤病、茶饼病和茶白星病4类病害,提出一种基于双节点-双边图神经网络的茶... 传统茶叶病害分类主要依赖人工方法,此类方法费工费时,同时茶叶病害样本较少使得现有的机器学习方法的模型训练不充分,病害分类准确率不够高。针对茶炭疽病、茶黑煤病、茶饼病和茶白星病4类病害,提出一种基于双节点-双边图神经网络的茶叶病害分类方法。首先通过两分支卷积神经网络提取RGB茶叶病害特征和灰度茶叶病害特征,两分支均采用ResNet12作为骨干网络,参数独立不共享,两类特征作为图神经网络的两个子节点,以获得不同域样本所包含的病害信息;其次构建相对度量边和相似性边两类边,从而强化节点对相邻节点所含病害特征的聚合能力。最后,经过双节点特征和双边特征更新模块,实现双节点和双边交替更新,提高边特征对节点距离度量的准确性,从而实现训练样本较少条件下对茶叶病害的准确分类。本文方法和小样本学习方法进行了对比实验,结果表明,本文方法获得更高的准确率,在miniImageNet和PlantVillage数据集上5way-1shot的准确率分别达到69.30%和88.42%,5way-5shot准确率分别为82.48%和93.04%。同时在茶叶数据集TeaD-5上5way-1shot和5way-5shot准确率分别达到84.74%和86.34%。 展开更多
关键词 茶叶 病害分类 神经网络 双节点 相对度量边 相似性边
下载PDF
基于GASF及神经网络的多周期脉象信号识别分类研究
5
作者 刘轩吉 刘光浚 +3 位作者 邓威 郝龙辉 王维广 陈占春 《中华中医药学刊》 CAS 北大核心 2024年第10期22-27,I0003,I0004,共8页
目的旨在解决一维时序的脉象信号特征提取阶段参数量不够以及一维信号转化为二维序列图像时逆运算缺失和数据与时序关系模糊等问题。方法提出了基于无分段聚合近似(PAA)的格拉姆和角场(GASF)及深度学习网络模型相结合的一维脉象信号多... 目的旨在解决一维时序的脉象信号特征提取阶段参数量不够以及一维信号转化为二维序列图像时逆运算缺失和数据与时序关系模糊等问题。方法提出了基于无分段聚合近似(PAA)的格拉姆和角场(GASF)及深度学习网络模型相结合的一维脉象信号多周期数据分类方法。首先通过GASF编码将一维脉象信号转换为二维时序图像,然后输入神经网络(TCPNet)进行训练并分类。设置了4273段同样长度的多周期脉象信号作为输入数据集。结果研究发现使用无分段聚合近似的格拉姆角场处理的网络准确率不低于89%。模型最高准确率达到93.61%,精确度为93.63%,F1分数为93.60%,召回率为93.61%。结论基于文章方法建立的脉象分类模型准确率明显提高,力证了分类方法的有效性,也为脉象信号的分类问题提供了新的思路和方法。 展开更多
关键词 多周期脉象信号 脉象识别分类 GASF 卷积神经网络 残差块
下载PDF
基于卷积神经网络焊管缺陷分类识别
6
作者 云晗 付红红 +1 位作者 王宗仁 侯怀书 《理化检验(物理分册)》 CAS 2024年第7期35-39,共5页
针对常规涡流检测阻抗平面分析法无法对不锈钢焊管缺陷种类进行识别的问题,提出了一种基于涡流检测技术结合机器学习对不锈钢焊管缺陷进行分类识别的有效方法。首先对提取到的涡流信号进行短时傅里叶变换,将原始涡流信号转换成二维时频... 针对常规涡流检测阻抗平面分析法无法对不锈钢焊管缺陷种类进行识别的问题,提出了一种基于涡流检测技术结合机器学习对不锈钢焊管缺陷进行分类识别的有效方法。首先对提取到的涡流信号进行短时傅里叶变换,将原始涡流信号转换成二维时频图;再将二维时频图输入到VGG-16和GoogLeNet两种神经网络训练模型的输入层中。结果表明:VGG-16和GoogLeNet两种神经网络训练模型能成功识别不锈管焊管的缺陷,且VGG-16模型在0.01的学习率下的整体分类精度高于GoogLeNet模型。 展开更多
关键词 不锈钢焊管 涡流检测 分类识别 神经网络 缺陷
下载PDF
基于卷积神经网络的岩渣分类算法及其FPGA加速
7
作者 陈昌川 王新立 +5 位作者 朱嘉琪 张天骐 尹淑娟 王珩 魏琦 乔飞 《传感技术学报》 CAS CSCD 北大核心 2024年第1期80-88,共9页
全断面岩石掘进机在道路掘进过程中,刀盘挤压切削岩体容易产生刀盘磨损及损坏,从而造成经济损失,因此需要检测刀盘磨损的理论和技术来指导施工。岩渣是掘进过程的直接产物,携带丰富的信息,能够反映当前的施工状况,因此可以通过岩渣识别... 全断面岩石掘进机在道路掘进过程中,刀盘挤压切削岩体容易产生刀盘磨损及损坏,从而造成经济损失,因此需要检测刀盘磨损的理论和技术来指导施工。岩渣是掘进过程的直接产物,携带丰富的信息,能够反映当前的施工状况,因此可以通过岩渣识别利用这些信息间接实现对刀盘的监测。提出了一种基于卷积神经网络的岩渣识别算法,在岩渣数据集上实现了96.5%的分类准确率。随后为了便于FPGA硬件部署,提出一种网络压缩方法,将网络规模压缩到原始网络的2.28%,同时分类准确率相比原网络仅下降了0.9%。最后使用OpenCL技术在Intel Arria 10 GX1150平台上实现了算法部署,达到了224.54 GOP/s的吞吐率以及11.23 GOP/s/W的能效比。 展开更多
关键词 岩渣分类 FPGA 卷积神经网络 OPENCL 硬件加速
下载PDF
基于集成神经网络的类风湿关节炎中医证候分类器研究
8
作者 杨晶东 江彪 +3 位作者 李熠伟 姜泉 韩曼 宋梦歌 《海军军医大学学报》 CAS CSCD 北大核心 2024年第3期305-319,共15页
目的构建一种集成神经网络模型实现类风湿关节炎(RA)中医证候分类,并探究其中的特征重要性和风险因素。方法针对基于人工智能技术的RA中医证候多标签分类中存在的标签关联性差、泛化性能低等问题,提出一种集成神经网络模型——集成神经... 目的构建一种集成神经网络模型实现类风湿关节炎(RA)中医证候分类,并探究其中的特征重要性和风险因素。方法针对基于人工智能技术的RA中医证候多标签分类中存在的标签关联性差、泛化性能低等问题,提出一种集成神经网络模型——集成神经网络链(FEN)。FEN模型采用一种基于深度神经网络的特征提取基分类器提取临床RA多标签样本的深层特征,增强RA特征区分度;根据协方差理论衡量标签相关性,调节分类器链的输入空间,减少RA错误信息传播和冗余度;并采用集成学习方法减小分类器链中不合理标签序列对RA特征分类的影响。此外,分析了RA中医证候主证和兼证的特征贡献度,挖掘其潜在的风险因素。结果FEN模型的10折交叉验证性能参数汉明损失、1-错误率、准确度和F1值分别为0.0036、0.0248、97.52%、99.18%。与7种典型多标签分类器(分类器链、标签幂集、二进制关联、随机k-标签集、多标签K最近邻、集成分类器链和集成二进制关联)相比,FEN模型具有较好的分类性能。特征贡献度分析提示,主症和次症特征均可作为RA中医证候分类的重要指标,是影响主证和兼证分类的主要因素。结论基于集成神经网络模型的RA中医证候分类器具有较高的分类精度和效率,对于RA的临床诊断和治疗具有重要参考价值。 展开更多
关键词 类风湿关节炎 多标签学习 神经网络 分类器链 集成学习
下载PDF
基于深度卷积神经网络的电子玻璃缺陷分类方法
9
作者 李苑 于浩 +5 位作者 金良茂 曹志强 陈家睿 郑际杰 韩高荣 刘涌 《中国建材科技》 CAS 2024年第S01期17-23,共7页
电子玻璃是信息显示产业的关键基础材料之一。近年来,显示产业向大尺寸化、超高清和轻薄化发展,对于电子玻璃基板的质量提出了更高的要求。机器视觉检测具有速度快、精度高、成本低、稳定性好等优点,被广泛应用于各种工业场景中。图像... 电子玻璃是信息显示产业的关键基础材料之一。近年来,显示产业向大尺寸化、超高清和轻薄化发展,对于电子玻璃基板的质量提出了更高的要求。机器视觉检测具有速度快、精度高、成本低、稳定性好等优点,被广泛应用于各种工业场景中。图像处理算法、识别分类算法是机器视觉检测的关键技术。本文针对基于深度卷积神经网络的整图分类方法在电子玻璃表面缺陷检测领域的应用,从图像数据处理、卷积神经网络构建、训练调参、评价标准等方面介绍其研究进展,并总结部分应用实例,对电子玻璃缺陷分类未来的研究方向进行展望。 展开更多
关键词 电子玻璃 机器视觉 深度卷积神经网络 缺陷分类
下载PDF
融合注意力机制卷积神经网络的扬声器异常声分类
10
作者 周静雷 王晓明 李丽敏 《西安工程大学学报》 CAS 2024年第2期101-108,共8页
针对扬声器异常声非线性、非平稳且易受外部噪声干扰,以及因特征冗余而导致扬声器异常声识别率偏低的问题,提出一种基于变分模态分解(variational mode decomposition, VMD)和一维卷积循环注意力网络(1DCNN-BiLSTM-Attention)相结合的... 针对扬声器异常声非线性、非平稳且易受外部噪声干扰,以及因特征冗余而导致扬声器异常声识别率偏低的问题,提出一种基于变分模态分解(variational mode decomposition, VMD)和一维卷积循环注意力网络(1DCNN-BiLSTM-Attention)相结合的扬声器异常声分类方法。首先,采集不同类型异常声信号,采用VMD对异常声信号进行分解并提取扬声器异常声特征,构建标签化的初始数据;其次,将特征数据输入至1DCNN-BiLSTM网络中进行初始化特征提取,利用注意力机制自适应优化网络对异常声特征的学习权重,提升网络对特征鉴别能力,并优化Dropout抑制网络在训练过程中存在的过拟合问题,构成1DCNN-BiLSTM-Attention分类网络;最后,将所提方法应用于扬声器异常声分类中。实验结果表明:该方法可以有效提取到扬声器异常声中的关键特征,平均分类准确率为99.17%,与VGG16、RF和DCNN相比,其准确率分别提高了13.14%、0.56%,12.34%。 展开更多
关键词 异常声分类 变分模态分解 卷积神经网络 注意力机制
下载PDF
基于卷积神经网络的档案分类与识别技术
11
作者 左震宇 《移动信息》 2024年第2期153-156,共4页
文中基于卷积神经网络,研究了档案分类与识别技术,旨在提高档案管理的效率和准确性。首先,介绍了卷积神经网络在图像分类任务中的应用,总结了现有研究的主要成果。然后,阐述了档案分类与识别的概念,详细介绍了卷积神经网络的基本原理和... 文中基于卷积神经网络,研究了档案分类与识别技术,旨在提高档案管理的效率和准确性。首先,介绍了卷积神经网络在图像分类任务中的应用,总结了现有研究的主要成果。然后,阐述了档案分类与识别的概念,详细介绍了卷积神经网络的基本原理和特点。接着,提出了基于卷积神经网络的档案分类与识别技术的基本流程,包括数据预处理、特征提取、分类归档等步骤。最后,详细讨论了数据采集、数据预处理、模型设计、模型训练、模型测试、结果分析等关键环节。 展开更多
关键词 卷积神经网络 档案管理 分类归档
下载PDF
考虑替代性的SOM神经网络卷烟配方模块分类方法研究
12
作者 王林 左平聪 +3 位作者 管雨涵 朱咏琦 周红审 吴庆华 《湖北农业科学》 2024年第8期164-170,共7页
为了提高模块替代决策效率和整个卷烟制造系统柔性与生产效率,提出了一种基于替代度的SOM神经网络模型对卷烟配方模块进行分类,并与历史替代统计结果进行比对。结果表明,替代度能较好地衡量模块间的替代程度,替代度越大,每个类别中的各... 为了提高模块替代决策效率和整个卷烟制造系统柔性与生产效率,提出了一种基于替代度的SOM神经网络模型对卷烟配方模块进行分类,并与历史替代统计结果进行比对。结果表明,替代度能较好地衡量模块间的替代程度,替代度越大,每个类别中的各项质量指标一致性越强,模块质量越相似,越推荐进行相互替代;在以不同替代度标准取值对卷烟配方模块进行分类时,替代度标准值越大,分类越细,选择替代度标准值为3.06作为卷烟配方模块强替代性的标准进行分类时是最合适的,此时每个类别中卷烟配方模块质量具有较高的相似性。基于替代度的SOM神经网络分类结果显示,发生类内替代的比例明显优于一般SOM神经网络算法、两阶段聚类算法和K-means聚类算法,当替代度标准值为3.06时,类内相互替代率可达95.39%,而类间替代率不足5.00%,相同类别模块替代率良好。 展开更多
关键词 卷烟 配方模块分类 替代度 SOM神经网络
下载PDF
可信的图神经网络节点分类方法
13
作者 刘彦北 马夕然 王雯 《天津工业大学学报》 CAS 北大核心 2024年第1期82-88,共7页
为了研究节点特征表示的不确定性对节点分类的影响,提出一种可信的图神经网络节点分类方法。算法使用径向基函数计算节点间距离,得到各类节点质心后,根据距离分配与未标记节点最近质心的类别标签提高节点分类性能,同时定义未标记节点和... 为了研究节点特征表示的不确定性对节点分类的影响,提出一种可信的图神经网络节点分类方法。算法使用径向基函数计算节点间距离,得到各类节点质心后,根据距离分配与未标记节点最近质心的类别标签提高节点分类性能,同时定义未标记节点和质心之间的距离为模型输出的不确定性,并使用梯度惩罚损失加强输入变化的可检测性,可以有效地检测分布外节点样本。在Cora、Citeseer和Pubmed这3个公开网络数据集上的结果表明:模型在分类任务的AUROC指标分别达到81.5%、76.2%和74.6%,在分布外样本检测任务中AUROC指标分别达到83.6%、72.8%和70.6%,证明了所提算法在提高节点分类性能的同时,可以有效检测分布外的节点样本,提高了节点分类的可信性。 展开更多
关键词 神经网络 节点分类 分布外检测 不确定性估计 梯度惩罚
下载PDF
基于多标签卷积神经网络的结构损伤识别
14
作者 秦世强 苏晟 杨睿 《建筑科学与工程学报》 CAS 北大核心 2024年第3期108-119,共12页
准确识别结构多位置损伤一直是结构损伤识别的难题。为提升结构多位置损伤识别的准确率,提出一种基于卷积神经网络(CNN)的多标签分类(MLC)方法(CNN-MLC)进行结构损伤识别。该方法将结构多个位置损伤识别转换为多标签分类问题,每个损伤... 准确识别结构多位置损伤一直是结构损伤识别的难题。为提升结构多位置损伤识别的准确率,提出一种基于卷积神经网络(CNN)的多标签分类(MLC)方法(CNN-MLC)进行结构损伤识别。该方法将结构多个位置损伤识别转换为多标签分类问题,每个损伤位置均用一个对应的标签表示;利用CNN强大的特征提取能力,深入挖掘不同损伤工况之间公共损伤位置的相关性,实现结构多位置损伤识别。通过四层框架结构和一座铁路连续梁桥多位置损伤识别验证了CNN-MLC方法的识别准确率,并将其识别结果与基于CNN的多类别分类(MCC)方法(CNN-MCC)和基于示例差异化算法(InsDif)的多标签分类方法(InsDif-MLC)进行了对比。结果表明:框架结构在两位置和三位置损伤工况下,CNN-MLC方法比CNN-MCC方法的识别准确率分别提升2.50%和9.64%,比InsDif-MLC方法识别准确率提升17.50%和29.28%;对于铁路连续梁桥的两位置损伤和三位置损伤,CNN-MLC方法比CNN-MCC方法识别准确率提升1.63%和6.85%,比InsDif-MLC方法识别准确率提升4.18%和18.49%;随着损伤位置数量的增加,CNN-MLC方法的识别准确率显著提升。 展开更多
关键词 结构损伤识别 卷积神经网络 多位置损伤 多类别分类 多标签分类
下载PDF
基于多元语义特征和图卷积神经网络的短文本分类模型
15
作者 鲁富宇 冷泳林 崔洪霞 《河南科学》 2024年第5期625-630,共6页
在互联网和社交媒体迅猛发展的背景下,网络中出现了大量的短文本数据,这些数据在舆情监控、情感分析和新闻分类等自然语言处理领域展现出了非常高的经济和学术价值.但短文本数据固有的特征给短文本分类带来了不小的挑战,如文本稀疏和缺... 在互联网和社交媒体迅猛发展的背景下,网络中出现了大量的短文本数据,这些数据在舆情监控、情感分析和新闻分类等自然语言处理领域展现出了非常高的经济和学术价值.但短文本数据固有的特征给短文本分类带来了不小的挑战,如文本稀疏和缺乏丰富的上下文语义等.针对这些问题,提出了一种结合多元语义特征和图卷积神经网络(GCN)的短文本分类模型,该模型通过哈尔滨工业大学的语言技术平台获取短文本的多种语义特征,并将这些语义特征同短文本一起构建一个多元异构图,然后将其作为GCN的输入,利用GCN学习短文本更深层特征,最后通过Softmax函数获取每个类别的概率分布,进而实现短文本分类.试验结果表明,本模型在短文本分类的F1评分上比传统单一模型提高了4%. 展开更多
关键词 短文本 多元异构图 语义特征 图卷积神经网络 分类模型
下载PDF
基于邻域粗集神经网络的大数据特征分类系统
16
作者 朱磊 凌嘉敏 《电子设计工程》 2024年第7期97-100,105,共5页
为提升主机元件对大数据的分类准确性,尽可能地避免数据误传,提出基于邻域粗集神经网络的大数据特征分类系统。在邻域粗集神经网络中,完成对邻域系数的粒化处理,通过逼近运算的方式,使神经网络模型快速趋于稳定。选取大数据特征调制信息... 为提升主机元件对大数据的分类准确性,尽可能地避免数据误传,提出基于邻域粗集神经网络的大数据特征分类系统。在邻域粗集神经网络中,完成对邻域系数的粒化处理,通过逼近运算的方式,使神经网络模型快速趋于稳定。选取大数据特征调制信息,借助调制识别器元件控制大数据特征的导出方向,结合关联信道组织完成数据特征的多标合并处理。实验表明,利用该系统可将大数据的单位召回率提升至65%,能够促进主机元件对大数据的准确分类。 展开更多
关键词 邻域粗集 神经网络 大数据特征 粒化处理 调制识别器 多标合并
下载PDF
基于图神经网络的专利文本分类研究
17
作者 魏雯婕 张更平 《竞争情报》 2024年第2期24-34,共11页
传统专利分类由专家逐件审阅,随着大数据、人工智能和自然语言处理技术的快速发展,专利文本自动分类正在成为学界、业界的重要研究方向之一。文本分类技术可以用于判断专利申请是否获得授权,帮助审查员自动化处理和分析专利申请文件,从... 传统专利分类由专家逐件审阅,随着大数据、人工智能和自然语言处理技术的快速发展,专利文本自动分类正在成为学界、业界的重要研究方向之一。文本分类技术可以用于判断专利申请是否获得授权,帮助审查员自动化处理和分析专利申请文件,从而提高工作效率。针对海量专利的英文文本,提出一种基于图神经网络模型的专利文本自动分类方法,用于测度专利申请是否可获得授权。使用深度学习算法TextGCN对专利摘要语料进行学习和训练,利用图结构数据的邻居信息和节点特征,通过神经网络产生专利文本的表示向量,进而实现专利授权与否的预测。实验结果表明,本文采用的深度学习算法能够得到较好的分类效果,并且与Doc2vec和TFIDF表示方法相比,该模型在精确度、召回率、准确率及F1方面均有所提高,可为专利授权与否的自动预测提供可靠的研究依据。 展开更多
关键词 专利分类 图卷积神经网络 Doc2vec TFIDF 表示学习
下载PDF
基于轻量化卷积神经网络的纬编针织物组织结构分类
18
作者 胡旭东 汤炜 +4 位作者 曾志发 汝欣 彭来湖 李建强 王博平 《纺织学报》 EI CAS CSCD 北大核心 2024年第5期60-69,共10页
为解决纬编针织物组织结构自动分类时现有方法计算量偏大的问题,基于轻量化卷积神经网络,提出了一种改进的纬编针织物组织结构分类方法。采集纬编针织物组织双面的图像,以准确判断其结构类型。在特征提取步骤中,引入了注意力机制模块,... 为解决纬编针织物组织结构自动分类时现有方法计算量偏大的问题,基于轻量化卷积神经网络,提出了一种改进的纬编针织物组织结构分类方法。采集纬编针织物组织双面的图像,以准确判断其结构类型。在特征提取步骤中,引入了注意力机制模块,修正各个层次特征在通道域和空间域的权重。构建的双分支网络架构能并行提取织物双面的特征信息。在分类阶段,采用了串行策略来融合高维特征向量,以确定纬编针织物组织所属类别。使用准确率、宏精确率、宏召回率以及宏F_(1)评估模型的性能,并统计了参数量和计算复杂度衡量模型的资源消耗。实验结果显示,对于纬编针织物特殊的结构特点,双分支网络架构具有很好的适应性。改进后的模型增强了不同组织间的特征区分度,在受到角度旋转、尺度改变、光照条件变化等干扰下,本文方法的分类准确率可达99.51%,且保持了较小的资源消耗。 展开更多
关键词 纬编针织物 组织结构分类 轻量化卷积神经网络 图像识别 双分支网络 注意力机制
下载PDF
基于混合神经网络的多维视觉传感信号模式分类
19
作者 陈威 蔡奕侨 《传感技术学报》 CAS CSCD 北大核心 2024年第6期1035-1040,共6页
传感器采集的数字信号分类精度差,导致关键信息的丢失。为了提高传感数据的可靠性和有效性,提出基于混合神经网络的多维视觉传感信号模式分类方法。结合卷积神经网络(CNN)、循环神经网络(RNN)构建混合神经网络,以更有效地表示多维视觉... 传感器采集的数字信号分类精度差,导致关键信息的丢失。为了提高传感数据的可靠性和有效性,提出基于混合神经网络的多维视觉传感信号模式分类方法。结合卷积神经网络(CNN)、循环神经网络(RNN)构建混合神经网络,以更有效地表示多维视觉数据中的特征;其中,卷积神经网络负责对多维的空间信号进行去噪处理并提取特征;循环神经网络负责对时域和频域信号进行特征提取;混合神经网络通过联合训练CNN和RNN各自的参数,以调整其权重,并且结合两者从不同层级提取的特征来实现多维视觉传感信号模式的分类。仿真结果表明,使用所提方法进行分类时,信号光滑度保持在0.9以上,传感信号分类结果与实际结果拟合度较高,有效实现多维视觉传感信号模式分类。 展开更多
关键词 传感器信号处理 信号模式分类 混合神经网络 视觉传感信号 卷积神经网络 循环神经网络 贝塞尔曲线
下载PDF
基于CMCP-LMCL的多分类深度神经网络及其应用
20
作者 王小燕 冮建伟 姚欣悦 《统计研究》 北大核心 2024年第7期148-160,共13页
多分类问题涉及信用风险管理、股票走势预测等多个领域。深度神经网络(DNN)是常用于多分类预测的机器学习模型,然而输入特征维度较高且存在冗余信号时,将加重其可解释性不强和结构冗余等缺陷;同时,常用的Softmax损失也可能面临分类边界... 多分类问题涉及信用风险管理、股票走势预测等多个领域。深度神经网络(DNN)是常用于多分类预测的机器学习模型,然而输入特征维度较高且存在冗余信号时,将加重其可解释性不强和结构冗余等缺陷;同时,常用的Softmax损失也可能面临分类边界模糊导致预测效果不佳等问题。为此,本文针对多分类问题,提出一个新的深度神经网络CMCP-LMCL,利用CMCP变量选择方法压缩输入特征到第1隐藏层的权重。该方法融合权重的组结构,能够剔除无关特征以及不重要的连接;同时,对特征层之外的权重施加权重衰减L;2;惩罚,有利于改进过拟合问题。新方法的增强边缘余弦损失(LMCL)在Softmax基础上引入扩大参数和距离参数,增大分类决策边界的间隔以期提高分类预测性能。模拟分析表明,对比已有DNN和传统分类方法,无论特征以简单线性形式还是复杂非线性形式映射到因变量,本文所提出的方法均具有良好的特征选择性能和预测表现。基于信用贷款数据的实证分析表明,该方法能够有效选择风险指标并进行违约风险预警。 展开更多
关键词 组变量选择 深度神经网络 分类 信用风险评估
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部