车间调度作为车间制造系统的重要组成部分,影响着整个车间制造系统的敏捷性和智能性.但是,由于资源和工艺约束的并存,使得车间调度成为一类NP-hard问题.基于静态的智能算法与动态的多Agent思想,提出了一种结合通用部分全局规划(generali...车间调度作为车间制造系统的重要组成部分,影响着整个车间制造系统的敏捷性和智能性.但是,由于资源和工艺约束的并存,使得车间调度成为一类NP-hard问题.基于静态的智能算法与动态的多Agent思想,提出了一种结合通用部分全局规划(generalized partial global planning,GPGP)机制与多种智能算法的多Agent车间调度模型,设计了从"初始宏观调度"到"微观再调度"的大规模复杂问题的调度步骤,并构建了一个柔性强且Agent可自我动态调度的仿真系统.同时,从理论上总结了GPGP基本协同机制的策略,实现了二级多目标优化调度.最后使用DECAF仿真Agent软件模拟了车间调度的GPGP协同机制,并与CNP,NONE机制进行了比较.结果表明,所提出的模型不仅提高了调度的效率,而且降低了资源的损耗.展开更多
Using the traditional swarm intelligence algorithm to solve the cooperative path planning problem for multi-UAVs is easy to incur the problems of local optimization and a slow convergence rate.A cooperative path plann...Using the traditional swarm intelligence algorithm to solve the cooperative path planning problem for multi-UAVs is easy to incur the problems of local optimization and a slow convergence rate.A cooperative path planning method for multi-UAVs based on the improved sheep optimization is proposed to tackle these.Firstly,based on the three-dimensional planning space,a multi-UAV cooperative cost function model is established according to the path planning requirements,and an initial track set is constructed by combining multiple-population ideas.Then an improved sheep optimization is proposed and used to solve the path planning problem and obtain multiple cooperative paths.The simulation results show that the sheep optimization can meet the requirements of path planning and realize the cooperative path planning of multi-UAVs.Compared with grey wolf optimizer(GWO),improved gray wolf optimizer(IGWO),chaotic gray wolf optimizer(CGWO),differential evolution(DE)algorithm,and particle swam optimization(PSO),the convergence speed and search accuracy of the improved sheep optimization are significantly improved.展开更多
The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soil...The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soils quickly and accurately,an optimized artificial neural network(ANN)approach based on the multi-population genetic algorithm(MPGA)was proposed in this study.The MPGA overcomes the problems of the traditional ANN such as low efficiency,local optimum and over-fitting.The developed optimized ANN method consists of ten input variables,twenty-one hidden neurons,and one output variable.The physical properties(liquid limit,plastic limit,plasticity index,0.075 mm passing percentage,maximum dry density,optimum moisture content),state variables(degree of compaction,moisture content)and stress variables(confining pressure,deviatoric stress)of subgrade soils were selected as input variables.The MR was directly used as the output variable.Then,adopting a large amount of experimental data from existing literature,the developed optimized ANN method was compared with the existing representative estimation methods.The results show that the developed optimized ANN method has the advantages of fast speed,strong generalization ability and good accuracy in MR estimation.展开更多
To decrease the impact of shorter product life cycles,dynamic cell formation problems(CFPs)and cell layout problems(CLPs)were simultaneously optimized.First,CFPs and CLPs were formally described.Due to the changes of ...To decrease the impact of shorter product life cycles,dynamic cell formation problems(CFPs)and cell layout problems(CLPs)were simultaneously optimized.First,CFPs and CLPs were formally described.Due to the changes of product demands and the lim it of machine capacity,the existing layout needed to be rearranged to a high degree.Secondly,a mathematical model was established for the objective function of minimizing the total costs.Thirdly,a novel dynamic multi-swarm particle swarm optimization(DMS-PSO)algorithm based on the communication learning strategy(CLS)was developed.Toavoid falling into local optimum and slow convergence,each swarm shared their optimal locations before regrouping.Finally,simulation experiments were conducted under different conditions.Numerical results indicate that the proposed algorithm has better stability and it converges faster than other existing algorithms.展开更多
文摘车间调度作为车间制造系统的重要组成部分,影响着整个车间制造系统的敏捷性和智能性.但是,由于资源和工艺约束的并存,使得车间调度成为一类NP-hard问题.基于静态的智能算法与动态的多Agent思想,提出了一种结合通用部分全局规划(generalized partial global planning,GPGP)机制与多种智能算法的多Agent车间调度模型,设计了从"初始宏观调度"到"微观再调度"的大规模复杂问题的调度步骤,并构建了一个柔性强且Agent可自我动态调度的仿真系统.同时,从理论上总结了GPGP基本协同机制的策略,实现了二级多目标优化调度.最后使用DECAF仿真Agent软件模拟了车间调度的GPGP协同机制,并与CNP,NONE机制进行了比较.结果表明,所提出的模型不仅提高了调度的效率,而且降低了资源的损耗.
基金supported in part by the Fundamental Research Funds for the Central Universities(No.NZ18008)。
文摘Using the traditional swarm intelligence algorithm to solve the cooperative path planning problem for multi-UAVs is easy to incur the problems of local optimization and a slow convergence rate.A cooperative path planning method for multi-UAVs based on the improved sheep optimization is proposed to tackle these.Firstly,based on the three-dimensional planning space,a multi-UAV cooperative cost function model is established according to the path planning requirements,and an initial track set is constructed by combining multiple-population ideas.Then an improved sheep optimization is proposed and used to solve the path planning problem and obtain multiple cooperative paths.The simulation results show that the sheep optimization can meet the requirements of path planning and realize the cooperative path planning of multi-UAVs.Compared with grey wolf optimizer(GWO),improved gray wolf optimizer(IGWO),chaotic gray wolf optimizer(CGWO),differential evolution(DE)algorithm,and particle swam optimization(PSO),the convergence speed and search accuracy of the improved sheep optimization are significantly improved.
基金Project(51878078)supported by the National Natural Science Foundation of ChinaProject(2018-025)supported by the Training Program for High-level Technical Personnel in Transportation Industry,ChinaProject(CTKY-PTRC-2018-003)supported by the Design Theory,Method and Demonstration of Durability Asphalt Pavement Based on Heavy-duty Traffic Conditions in Shanghai Area,China。
文摘The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soils quickly and accurately,an optimized artificial neural network(ANN)approach based on the multi-population genetic algorithm(MPGA)was proposed in this study.The MPGA overcomes the problems of the traditional ANN such as low efficiency,local optimum and over-fitting.The developed optimized ANN method consists of ten input variables,twenty-one hidden neurons,and one output variable.The physical properties(liquid limit,plastic limit,plasticity index,0.075 mm passing percentage,maximum dry density,optimum moisture content),state variables(degree of compaction,moisture content)and stress variables(confining pressure,deviatoric stress)of subgrade soils were selected as input variables.The MR was directly used as the output variable.Then,adopting a large amount of experimental data from existing literature,the developed optimized ANN method was compared with the existing representative estimation methods.The results show that the developed optimized ANN method has the advantages of fast speed,strong generalization ability and good accuracy in MR estimation.
基金The National Natural Science Foundation of China(No.71471135)
文摘To decrease the impact of shorter product life cycles,dynamic cell formation problems(CFPs)and cell layout problems(CLPs)were simultaneously optimized.First,CFPs and CLPs were formally described.Due to the changes of product demands and the lim it of machine capacity,the existing layout needed to be rearranged to a high degree.Secondly,a mathematical model was established for the objective function of minimizing the total costs.Thirdly,a novel dynamic multi-swarm particle swarm optimization(DMS-PSO)algorithm based on the communication learning strategy(CLS)was developed.Toavoid falling into local optimum and slow convergence,each swarm shared their optimal locations before regrouping.Finally,simulation experiments were conducted under different conditions.Numerical results indicate that the proposed algorithm has better stability and it converges faster than other existing algorithms.