A nonparametric Bayesian method is presented to classify the MPSK (M-ary phase shift keying) signals. The MPSK signals with unknown signal noise ratios (SNRs) are modeled as a Gaussian mixture model with unknown m...A nonparametric Bayesian method is presented to classify the MPSK (M-ary phase shift keying) signals. The MPSK signals with unknown signal noise ratios (SNRs) are modeled as a Gaussian mixture model with unknown means and covariances in the constellation plane, and a clustering method is proposed to estimate the probability density of the MPSK signals. The method is based on the nonparametric Bayesian inference, which introduces the Dirichlet process as the prior probability of the mixture coefficient, and applies a normal inverse Wishart (NIW) distribution as the prior probability of the unknown mean and covariance. Then, according to the received signals, the parameters are adjusted by the Monte Carlo Markov chain (MCMC) random sampling algorithm. By iterations, the density estimation of the MPSK signals can be estimated. Simulation results show that the correct recognition ratio of 2/4/8PSK is greater than 95% under the condition that SNR 〉5 dB and 1 600 symbols are used in this method.展开更多
A novel iterative technique, the phase descent search detection was proposed. This technique constrained the solution (PDS) algorithm, for M-ary phase shift keying (M-PSK) symbols to have a unit magnitude and it w...A novel iterative technique, the phase descent search detection was proposed. This technique constrained the solution (PDS) algorithm, for M-ary phase shift keying (M-PSK) symbols to have a unit magnitude and it was based on coordinate descent iterations where coordinates were the unknown symbol phases. The PDS algorithm, together with a descent local search (also implemented as a version of the PDS algorithm), was used multiple times with different initializations in a proposed multiple phase detector; the solution with the minimum cost was then chosen as the final solution. The simulation results show that for highly loaded multiuser scenarios, the proposed technique has a detection performance that is close to the single-user bound. The results also show that the multiple phase detector allows detection in highly overloaded scenarios and it exhibits near-far resistance. In particular, the detector has a performance that is significantly better, and complexity that is significantly lower, than that of the detector based on semi-definite relaxation.展开更多
Equalization can compensate channel distortion caused by channel multipath effects, and effectively improve convergent of modulation constellation diagram in optical wireless system. In this paper, the subspace blind ...Equalization can compensate channel distortion caused by channel multipath effects, and effectively improve convergent of modulation constellation diagram in optical wireless system. In this paper, the subspace blind equalization algorithm is used to preprocess M-ary phase shift keying(MPSK) subcarrier modulation signal in receiver. Mountain clustering is adopted to get the clustering centers of MPSK modulation constellation diagram, and the modulation order is automatically identified through the k-nearest neighbor(KNN) classifier. The experiment has been done under four different weather conditions. Experimental results show that the convergent of constellation diagram is improved effectively after using the subspace blind equalization algorithm, which means that the accuracy of modulation recognition is increased. The correct recognition rate of 16 PSK can be up to 85% in any kind of weather condition which is mentioned in paper. Meanwhile, the correct recognition rate is the highest in cloudy and the lowest in heavy rain condition.展开更多
基金Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China(No.3104001014)
文摘A nonparametric Bayesian method is presented to classify the MPSK (M-ary phase shift keying) signals. The MPSK signals with unknown signal noise ratios (SNRs) are modeled as a Gaussian mixture model with unknown means and covariances in the constellation plane, and a clustering method is proposed to estimate the probability density of the MPSK signals. The method is based on the nonparametric Bayesian inference, which introduces the Dirichlet process as the prior probability of the mixture coefficient, and applies a normal inverse Wishart (NIW) distribution as the prior probability of the unknown mean and covariance. Then, according to the received signals, the parameters are adjusted by the Monte Carlo Markov chain (MCMC) random sampling algorithm. By iterations, the density estimation of the MPSK signals can be estimated. Simulation results show that the correct recognition ratio of 2/4/8PSK is greater than 95% under the condition that SNR 〉5 dB and 1 600 symbols are used in this method.
文摘A novel iterative technique, the phase descent search detection was proposed. This technique constrained the solution (PDS) algorithm, for M-ary phase shift keying (M-PSK) symbols to have a unit magnitude and it was based on coordinate descent iterations where coordinates were the unknown symbol phases. The PDS algorithm, together with a descent local search (also implemented as a version of the PDS algorithm), was used multiple times with different initializations in a proposed multiple phase detector; the solution with the minimum cost was then chosen as the final solution. The simulation results show that for highly loaded multiuser scenarios, the proposed technique has a detection performance that is close to the single-user bound. The results also show that the multiple phase detector allows detection in highly overloaded scenarios and it exhibits near-far resistance. In particular, the detector has a performance that is significantly better, and complexity that is significantly lower, than that of the detector based on semi-definite relaxation.
基金supported by the National Natural Science Foundation of China(No.61671375)the Industrial Research of Science and Technology Plan of Shaanxi Province(No.2016GY-082)
文摘Equalization can compensate channel distortion caused by channel multipath effects, and effectively improve convergent of modulation constellation diagram in optical wireless system. In this paper, the subspace blind equalization algorithm is used to preprocess M-ary phase shift keying(MPSK) subcarrier modulation signal in receiver. Mountain clustering is adopted to get the clustering centers of MPSK modulation constellation diagram, and the modulation order is automatically identified through the k-nearest neighbor(KNN) classifier. The experiment has been done under four different weather conditions. Experimental results show that the convergent of constellation diagram is improved effectively after using the subspace blind equalization algorithm, which means that the accuracy of modulation recognition is increased. The correct recognition rate of 16 PSK can be up to 85% in any kind of weather condition which is mentioned in paper. Meanwhile, the correct recognition rate is the highest in cloudy and the lowest in heavy rain condition.