针对结构化的非凸非光滑优化问题,提出了一种改进的惯性近端交替方向乘子法(Modified Inertial Proximal Alternating Direction Method of Multipliers, MID-PADMM)。该问题在多个领域,包括机器学习、信号处理和经济学中具有重要应用...针对结构化的非凸非光滑优化问题,提出了一种改进的惯性近端交替方向乘子法(Modified Inertial Proximal Alternating Direction Method of Multipliers, MID-PADMM)。该问题在多个领域,包括机器学习、信号处理和经济学中具有重要应用。现有算法在处理这类问题时,往往面临收敛速度慢或无法保证收敛的挑战。为了克服这些限制,引入了一种双重松弛项,以增强算法的鲁棒性和灵活性。理论分析表明,MID-PADMM算法在适当的条件下能够实现全局收敛,并且具有O(1/k)的迭代复杂度,其中k代表迭代次数。数值实验结果表明,与现有的状态最优算法相比,MID-PADMM在多个实例中展现出更快的收敛速度和更高的求解质量。展开更多
提出了一种针对超高压线路近端故障的快速距离保护新算法.该方法利用积分算法响应速度快、计算工作量小的特点,基于微分方程模型,结合工频变化量原理,有效地实现了超高压长线路近端故障的正确快速动作.基于RTDS数模仿真平台,对500 k V...提出了一种针对超高压线路近端故障的快速距离保护新算法.该方法利用积分算法响应速度快、计算工作量小的特点,基于微分方程模型,结合工频变化量原理,有效地实现了超高压长线路近端故障的正确快速动作.基于RTDS数模仿真平台,对500 k V线路的多种故障形式进行了数模仿真试验,验证了该算法在超高压线路近端故障时可靠快速的动作性能.展开更多
文摘针对结构化的非凸非光滑优化问题,提出了一种改进的惯性近端交替方向乘子法(Modified Inertial Proximal Alternating Direction Method of Multipliers, MID-PADMM)。该问题在多个领域,包括机器学习、信号处理和经济学中具有重要应用。现有算法在处理这类问题时,往往面临收敛速度慢或无法保证收敛的挑战。为了克服这些限制,引入了一种双重松弛项,以增强算法的鲁棒性和灵活性。理论分析表明,MID-PADMM算法在适当的条件下能够实现全局收敛,并且具有O(1/k)的迭代复杂度,其中k代表迭代次数。数值实验结果表明,与现有的状态最优算法相比,MID-PADMM在多个实例中展现出更快的收敛速度和更高的求解质量。
文摘提出了一种针对超高压线路近端故障的快速距离保护新算法.该方法利用积分算法响应速度快、计算工作量小的特点,基于微分方程模型,结合工频变化量原理,有效地实现了超高压长线路近端故障的正确快速动作.基于RTDS数模仿真平台,对500 k V线路的多种故障形式进行了数模仿真试验,验证了该算法在超高压线路近端故障时可靠快速的动作性能.