期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
采用多层图模型推理的道路场景分割算法
被引量:
5
1
作者
邓燕子
卢朝阳
+1 位作者
李静
刘阳
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2017年第12期62-67,共6页
针对传统图模型分割算法提取的物体边缘不够精细、难以适应复杂道路场景布局的问题,提出了一种基于多层图模型推理的道路场景分割(HGI)算法。该算法先将图像过分割为同质的超像素块,再采用随机森林模型训练超像素块的多类别回归器和相...
针对传统图模型分割算法提取的物体边缘不够精细、难以适应复杂道路场景布局的问题,提出了一种基于多层图模型推理的道路场景分割(HGI)算法。该算法先将图像过分割为同质的超像素块,再采用随机森林模型训练超像素块的多类别回归器和相邻超像素的一致性回归器;然后用2种回归值计算马尔科夫随机场(MRF)模型的能量项,通过推理得到初始分割;最后为了解决超像素块包含多类别带来的分类混淆,在初始分割基础上构建像素级的全连接条件随机场模型,进行优化得到精细的分割结果。实验结果表明,采用HGI算法对人工标注数据库和真实拍摄的场景图像处理能够得到精细的分割边缘,能够解决超像素推理中的类别混淆问题,与传统的MRF图模型分割方法相比,在总体精度和平均召回率2个指标上分别提高了2%和3%。
展开更多
关键词
道路场景分割
多类别图像标记
随机森林
马尔科夫随机场
下载PDF
职称材料
题名
采用多层图模型推理的道路场景分割算法
被引量:
5
1
作者
邓燕子
卢朝阳
李静
刘阳
机构
西安电子科技大学综合业务网理论及关键技术国家重点实验室
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2017年第12期62-67,共6页
基金
国家自然科学基金资助项目(61502364)
文摘
针对传统图模型分割算法提取的物体边缘不够精细、难以适应复杂道路场景布局的问题,提出了一种基于多层图模型推理的道路场景分割(HGI)算法。该算法先将图像过分割为同质的超像素块,再采用随机森林模型训练超像素块的多类别回归器和相邻超像素的一致性回归器;然后用2种回归值计算马尔科夫随机场(MRF)模型的能量项,通过推理得到初始分割;最后为了解决超像素块包含多类别带来的分类混淆,在初始分割基础上构建像素级的全连接条件随机场模型,进行优化得到精细的分割结果。实验结果表明,采用HGI算法对人工标注数据库和真实拍摄的场景图像处理能够得到精细的分割边缘,能够解决超像素推理中的类别混淆问题,与传统的MRF图模型分割方法相比,在总体精度和平均召回率2个指标上分别提高了2%和3%。
关键词
道路场景分割
多类别图像标记
随机森林
马尔科夫随机场
Keywords
road scene segmentation
multi-class image labeling
random forest
markov random field
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
采用多层图模型推理的道路场景分割算法
邓燕子
卢朝阳
李静
刘阳
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2017
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部