In this paper,we study a long-range percolation model on the lattice Z d with multi-type vertices and directed edges.Each vertex x ∈ Z d is independently assigned a non-negative weight Wx and a type ψx,where(Wx) x∈...In this paper,we study a long-range percolation model on the lattice Z d with multi-type vertices and directed edges.Each vertex x ∈ Z d is independently assigned a non-negative weight Wx and a type ψx,where(Wx) x∈Z d are i.i.d.random variables,and(ψx) x∈Z d are also i.i.d.Conditionally on weights and types,and given λ,α > 0,the edges are independent and the probability that there is a directed edge from x to y is given by pxy = 1 exp(λφψ x ψ y WxWy /| x-y | α),where φij 's are entries from a type matrix Φ.We show that,when the tail of the distribution of Wx is regularly varying with exponent τ-1,the tails of the out/in-degree distributions are both regularly varying with exponent γ = α(τ-1) /d.We formulate conditions under which there exist critical values λ WCC c ∈(0,∞) and λ SCC c ∈(0,∞) such that an infinite weak component and an infinite strong component emerge,respectively,when λ exceeds them.A phase transition is established for the shortest path lengths of directed and undirected edges in the infinite component at the point γ = 2,where the out/in-degrees switch from having finite to infinite variances.The random graph model studied here features some structures of multi-type vertices and directed edges which appear naturally in many real-world networks,such as the SNS networks and computer communication networks.展开更多
The nonlinear stability of traveling waves for a multi-type SIS epidemic model is inves- tigated in this paper. By using the comparison principle together with the weighted energy function, we obtain the exponential s...The nonlinear stability of traveling waves for a multi-type SIS epidemic model is inves- tigated in this paper. By using the comparison principle together with the weighted energy function, we obtain the exponential stability of traveling wavefront with large wave speed. The initial perturbation around the traveling wavefront decays exponen- tially as x → -∞, but it can be arbitrarily large in other locations.展开更多
文摘In this paper,we study a long-range percolation model on the lattice Z d with multi-type vertices and directed edges.Each vertex x ∈ Z d is independently assigned a non-negative weight Wx and a type ψx,where(Wx) x∈Z d are i.i.d.random variables,and(ψx) x∈Z d are also i.i.d.Conditionally on weights and types,and given λ,α > 0,the edges are independent and the probability that there is a directed edge from x to y is given by pxy = 1 exp(λφψ x ψ y WxWy /| x-y | α),where φij 's are entries from a type matrix Φ.We show that,when the tail of the distribution of Wx is regularly varying with exponent τ-1,the tails of the out/in-degree distributions are both regularly varying with exponent γ = α(τ-1) /d.We formulate conditions under which there exist critical values λ WCC c ∈(0,∞) and λ SCC c ∈(0,∞) such that an infinite weak component and an infinite strong component emerge,respectively,when λ exceeds them.A phase transition is established for the shortest path lengths of directed and undirected edges in the infinite component at the point γ = 2,where the out/in-degrees switch from having finite to infinite variances.The random graph model studied here features some structures of multi-type vertices and directed edges which appear naturally in many real-world networks,such as the SNS networks and computer communication networks.
文摘The nonlinear stability of traveling waves for a multi-type SIS epidemic model is inves- tigated in this paper. By using the comparison principle together with the weighted energy function, we obtain the exponential stability of traveling wavefront with large wave speed. The initial perturbation around the traveling wavefront decays exponen- tially as x → -∞, but it can be arbitrarily large in other locations.