期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
一种采用LLE降维和贝叶斯分类的多类标学习算法 被引量:4
1
作者 李宏 谢政 +1 位作者 向遥 吴敏 《系统工程与电子技术》 EI CSCD 北大核心 2009年第6期1467-1472,共6页
多类标数据中的样本可能属于一个或多个类标,因此其分类问题较单类标分类更为复杂。提出一种新的多类标学习算法,首先针对多类标数据的特征属性维数高的特点,采用LLE算法对多类标数据的特征属性进行降维,提取能较完整描述数据的一组低... 多类标数据中的样本可能属于一个或多个类标,因此其分类问题较单类标分类更为复杂。提出一种新的多类标学习算法,首先针对多类标数据的特征属性维数高的特点,采用LLE算法对多类标数据的特征属性进行降维,提取能较完整描述数据的一组低维特征属性集;然后将多类标样本集按所属的类标进行划分,并采用贝叶斯分类模型来学习各组样本集的分类特性;根据各个分类模型的判定类标,综合得到多类标样本的最终类标集。将该算法分别应用到自然场景图像和基因数据的多类标分类学习中,实验结果表明,该算法针对不同的多类标数据集均能取得很好的分类效果,且相比于其他多类标算法有更高的性能。 展开更多
关键词 多类学习 朴素贝叶斯分 自然场景图像分 基因数据集分
下载PDF
基于海林格距离和SMOTE的多类不平衡学习算法 被引量:10
2
作者 董明刚 姜振龙 敬超 《计算机科学》 CSCD 北大核心 2020年第1期102-109,共8页
数据不平衡现象在现实生活中普遍存在。在处理不平衡数据时,传统的机器学习算法难以达到令人满意的效果。少数类样本合成上采样技术(Synthetic Minority Oversampling Technique,SMOTE)是一种有效的方法,但在多类不平衡数据中,边界点分... 数据不平衡现象在现实生活中普遍存在。在处理不平衡数据时,传统的机器学习算法难以达到令人满意的效果。少数类样本合成上采样技术(Synthetic Minority Oversampling Technique,SMOTE)是一种有效的方法,但在多类不平衡数据中,边界点分布错乱和类别分布不连续变得更加复杂,导致合成的样本点会侵入其他类别区域,造成数据过泛化。鉴于基于海林格距离的决策树已被证明对不平衡数据具有不敏感性,文中结合海林格距离和SMOTE,提出了一种基于海林格距离和SMOTE的上采样算法(Based on Hellinger Distance and SMOTE Oversampling Algorithm,HDSMOTE)。首先,建立基于海林格距离的采样方向选择策略,通过比较少数类样本点的局部近邻域内的海林格距离的大小,来引导合成样本点的方向。其次,设计了基于海林格距离的采样质量评估策略,以免合成的样本点侵入其他类别的区域,降低过泛化的风险。最后,采用7种代表性的上采样算法和HDSMOTE算法对15个多类不平衡数据集进行预处理,使用决策树的分类器进行分类,以Precision,Recall,F-measure,G-mean和MAUC作为评价标准对各算法的性能进行评价。实验结果表明,相比于对比算法,HDSMOTE算法在以上评价标准上均有所提升:在Precision上最高提升了17.07%,在Recall上最高提升了21.74%,在F-measure上最高提升了19.63%,在G-mean上最高提升了16.37%,在MAUC上最高提升了8.51%。HDSMOTE相对于7种代表性的上采样方法,在处理多类不平衡数据时有更好的分类效果。 展开更多
关键词 SMOTE 上采样 海林格距离 多类不平衡学习
下载PDF
一种新的基于SVDD的多类分类算法 被引量:4
3
作者 缪志敏 潘志松 +1 位作者 袁伟伟 赵陆文 《计算机科学》 CSCD 北大核心 2009年第3期65-68,共4页
目前的多类学习方法大多将多类问题转化为二类问题,这样处理除了时间开销大,还存在识别盲区。提出了一种直接进行多类学习的算法multi-SVDD。该算法在考虑大样本和多类样本数据中的类内不平衡现象基础上,首先为每类训练样本进行聚类,根... 目前的多类学习方法大多将多类问题转化为二类问题,这样处理除了时间开销大,还存在识别盲区。提出了一种直接进行多类学习的算法multi-SVDD。该算法在考虑大样本和多类样本数据中的类内不平衡现象基础上,首先为每类训练样本进行聚类,根据聚类结果由支持向量数据描述(SVDD,Support Vector Date Description)建立多个最小包围球。根据测试样本到SVDD所建立的最小包围球的距离来确定测试样本属于哪个聚类,最终可判断测试样本属于哪个类。multi-SVDD算法在时空开销上相比最小包围球方法没有明显增长,而实验效果则好于最小包围球方法。 展开更多
关键词 多类学习 支持向量数据描述 不平衡学习
下载PDF
基于多目标优化的SVM多类分类方法 被引量:2
4
作者 张晓龙 邱泽伟 张晓芳 《计算机工程与设计》 CSCD 北大核心 2009年第8期1960-1962,1973,共4页
为了利用ROC曲线下的面积(AUC),更好地评价多类SVM学习效果,提出了MOSMAUC(multi-objective optimizes multiclass SVM based on AUC)算法。该算法采用AUC作为评价标准,利用多目标优化算法作为SVM参数的优化方法,避免优化对象的AUC值过... 为了利用ROC曲线下的面积(AUC),更好地评价多类SVM学习效果,提出了MOSMAUC(multi-objective optimizes multiclass SVM based on AUC)算法。该算法采用AUC作为评价标准,利用多目标优化算法作为SVM参数的优化方法,避免优化对象的AUC值过低问题,因为在多类分类学习中任何一个两类分类的AUC值太低,都会影响整体学习的效果。实验结果表明,提出的优化方法改进了算法的学习能力,取得了较好的学习效果。 展开更多
关键词 支持向量机 ROC曲线下面积 多目标优化 多类学习 PARETO最优解
下载PDF
多分类转导支持向量机
5
作者 胡政发 《湖北汽车工业学院学报》 2007年第4期46-49,68,共5页
为了完成分类学习,传统的支持向量机基于带标记信息的经验数据归纳出一个通用的决策函数。而转导支持向量机则不同,它考虑包含测试集在内的所有数据信息并致力于最小化测试样本的分类错误数。在已有的2类分类方法的基础上构造了直接求... 为了完成分类学习,传统的支持向量机基于带标记信息的经验数据归纳出一个通用的决策函数。而转导支持向量机则不同,它考虑包含测试集在内的所有数据信息并致力于最小化测试样本的分类错误数。在已有的2类分类方法的基础上构造了直接求解多类分类问题的的转导支持向量机。 展开更多
关键词 转导推理 支持向量机 多类学习
下载PDF
杜鹃花各生长期识别与监测研究
6
作者 裴晓芳 胡敏 《电子科技》 2021年第1期17-22,共6页
针对传统BoF算法缺乏空间信息的问题,文中提出一种改进式BoF算法,并将其应用于杜鹃花各生长期识别与病虫害监测问题。该算法在基于LAB的颜色特征中融入有序的空间信息,形成了新的空间颜色聚合特征来代替传统颜色直方图,有效解决了颜色... 针对传统BoF算法缺乏空间信息的问题,文中提出一种改进式BoF算法,并将其应用于杜鹃花各生长期识别与病虫害监测问题。该算法在基于LAB的颜色特征中融入有序的空间信息,形成了新的空间颜色聚合特征来代替传统颜色直方图,有效解决了颜色特征变化尺度小的问题。该算法提取SURF特征代替原有的SIFT特征,通过一种多类特征学习算法融合颜色特征和SURF特征实现图像分类,并通过进一步分析叶片特征来快速识别杜鹃花植株的生长期与病害。经过仿真得知,基于LAB的颜色聚合向量的改进式BoF模型识别率达到了90.6%,较传统颜色直方图的图像分类方法图像检索速度增加3倍,更容易实现特征融合。 展开更多
关键词 改进式BoF算法 空间颜色聚合特征 SURF LAB 多类特征学习 叶片特征 特征融合
下载PDF
Max-margin based Bayesian classifier 被引量:1
7
作者 Tao-cheng HU Jin-hui YU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第10期973-981,共9页
There is a tradeoff between generalization capability and computational overhead in multi-class learning. We propose a generative probabilistic multi-class classifier, considering both the generalization capability an... There is a tradeoff between generalization capability and computational overhead in multi-class learning. We propose a generative probabilistic multi-class classifier, considering both the generalization capability and the learning/prediction rate. We show that the classifier has a max-margin property. Thus, prediction on future unseen data can nearly achieve the same performance as in the training stage. In addition, local variables are eliminated, which greatly simplifies the optimization problem. By convex and probabilistic analysis, an efficient online learning algorithm is developed. The algorithm aggregates rather than averages dualities, which is different from the classical situations. Empirical results indicate that our method has a good generalization capability and coverage rate. 展开更多
关键词 Multi-class learning Max-margin learning Online algorithm
原文传递
Side-channel attacks and learning-vector quantization
8
作者 Ehsan SAEEDI Yinan KONG Md. Selim HOSSAIN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第4期511-518,共8页
The security of cryptographic systems is a major concern for cryptosystem designers, even though cryptography algorithms have been improved. Side-channel attacks, by taking advantage of physical vulnerabilities of cry... The security of cryptographic systems is a major concern for cryptosystem designers, even though cryptography algorithms have been improved. Side-channel attacks, by taking advantage of physical vulnerabilities of cryptosystems, aim to gain secret information. Several approaches have been proposed to analyze side-channel information, among which machine learning is known as a promising method. Machine learning in terms of neural networks learns the signature (power consumption and electromagnetic emission) of an instruction, and then recognizes it automatically. In this paper, a novel experimental investigation was conducted on field-programmable gate array (FPGA) implementation of elliptic curve cryptography (ECC), to explore the efficiency of side-channel information characterization based on a learning vector quantization (LVQ) neural network. The main characteristics of LVQ as a multi-class classifier are that it has the ability to learn complex non-linear input-output relationships, use sequential training procedures, and adapt to the data. Experimental results show the performance of multi-class classification based on LVQ as a powerful and promising approach of side-channel data characterization. 展开更多
关键词 Side-channel attacks Elliptic curve cryptography Multi-class classification Learning vector auantization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部