期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于多粒度联合孤立森林的机器人实时异常监控方法 被引量:6
1
作者 于振中 洪辉武 +1 位作者 徐斌 江瀚澄 《计算机应用研究》 CSCD 北大核心 2021年第6期1785-1789,共5页
针对机器人实时异常监控问题,提出了基于多粒度联合孤立森林的实时异常监控方法。该方法对机器人的历史数据进行多粒度参数重组得到一系列具有不同参数组合的数据集,每一个数据集都可以训练一个孤立森林,最终产生了一个孤立森林集合。... 针对机器人实时异常监控问题,提出了基于多粒度联合孤立森林的实时异常监控方法。该方法对机器人的历史数据进行多粒度参数重组得到一系列具有不同参数组合的数据集,每一个数据集都可以训练一个孤立森林,最终产生了一个孤立森林集合。多个孤立森林联合投票策略是使用一个异常数据集对各个森林进行测试,求出异常数据集在每个孤立森林上的平均异常分数,并由此确定每个孤立森林在联合孤立森林模型总体决策中的话语权。以机器人的碰撞异常作为监控对象对该方法进行评价,监控准确率达99.8%,且报警平均延迟仅为26.72 ms,说明该方法能够有效地实现机器人实时异常监控。 展开更多
关键词 孤立森林 机器人 异常监测 多粒度联合
下载PDF
一种面向观点挖掘的多粒度话题情感联合模型 被引量:4
2
作者 赵煜 蔡皖东 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2011年第3期181-188,共8页
为了提高文本观点挖掘的效率,通过扩展标准话题模型,提出了一种新颖的多粒度话题情感联合模型(MG-TSJ).模型将文本话题区分为全局和局部两类,同时挖掘文本中涉及的多层次话题信息和情感倾向信息.该模型采用非监督的学习方法,解决了现有... 为了提高文本观点挖掘的效率,通过扩展标准话题模型,提出了一种新颖的多粒度话题情感联合模型(MG-TSJ).模型将文本话题区分为全局和局部两类,同时挖掘文本中涉及的多层次话题信息和情感倾向信息.该模型采用非监督的学习方法,解决了现有方法存在的领域依赖问题.通过在测试语料库上进行实验,该模型在文本情感倾向性分类任务中的准确率达到82.6%,具有和监督分类系统相当的性能;挖掘话题集合呈现层次化、语义相关的特点,证明了MG-TSJ模型对观点挖掘是可行的和有效的. 展开更多
关键词 观点挖掘 话题模型 多粒度话题情感联合模型 非监督学习 蒙特卡罗模拟法
下载PDF
基于引领森林的多粒度广义长尾分类
3
作者 杨金业 徐计 王国胤 《计算机科学》 CSCD 北大核心 2024年第11期229-238,共10页
长尾分类在现实世界中是一项不可避免且充满挑战的任务。传统方法通常只专注于类间的不平衡分布,然而近期的研究开始重视类内的长尾分布,即同一类别内,具有头部属性的样本远多于尾部属性的样本。由于属性的隐含性和其组合的复杂性,类内... 长尾分类在现实世界中是一项不可避免且充满挑战的任务。传统方法通常只专注于类间的不平衡分布,然而近期的研究开始重视类内的长尾分布,即同一类别内,具有头部属性的样本远多于尾部属性的样本。由于属性的隐含性和其组合的复杂性,类内不平衡问题更加难以处理。为此,文中提出一种基于引领森林并使用多中心损失的广义长尾分类框架(Cognisance),旨在通过不变性特征学习的范式建立长尾分类问题的多粒度联合求解模型。首先,该框架通过无监督学习构建粗粒度引领森林(Coarse-Grained Leading Forest,CLF),以更好地表征类内关于不同属性的样本分布,进而在不变风险最小化的过程中构建不同的环境。其次,设计了一种新的度量学习损失,即多中心损失(Multi-Center Loss,MCL),可在特征学习过程中逐步消除混淆属性。同时,Cognisance不依赖于特定模型结构,可作为独立组件与其他长尾分类方法集成。在ImageNet-GLT和MSCOCO-GLT数据集上的实验结果显示,所提框架取得了最佳性能,现有方法通过与本框架集成,在Top1-Accuracy指标上均获得2%~8%的提升。 展开更多
关键词 长尾分类 不平衡学习 不变性特征学习 多粒度联合求解
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部