期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种面向观点挖掘的多粒度话题情感联合模型 被引量:4
1
作者 赵煜 蔡皖东 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2011年第3期181-188,共8页
为了提高文本观点挖掘的效率,通过扩展标准话题模型,提出了一种新颖的多粒度话题情感联合模型(MG-TSJ).模型将文本话题区分为全局和局部两类,同时挖掘文本中涉及的多层次话题信息和情感倾向信息.该模型采用非监督的学习方法,解决了现有... 为了提高文本观点挖掘的效率,通过扩展标准话题模型,提出了一种新颖的多粒度话题情感联合模型(MG-TSJ).模型将文本话题区分为全局和局部两类,同时挖掘文本中涉及的多层次话题信息和情感倾向信息.该模型采用非监督的学习方法,解决了现有方法存在的领域依赖问题.通过在测试语料库上进行实验,该模型在文本情感倾向性分类任务中的准确率达到82.6%,具有和监督分类系统相当的性能;挖掘话题集合呈现层次化、语义相关的特点,证明了MG-TSJ模型对观点挖掘是可行的和有效的. 展开更多
关键词 观点挖掘 话题模型 多粒度话题情感联合模型 非监督学习 蒙特卡罗模拟法
下载PDF
一种融合词序信息的多粒度文本话题情感联合模型 被引量:2
2
作者 赵煜 邵必林 边根庆 《西安交通大学学报》 EI CAS CSCD 北大核心 2014年第11期103-108,共6页
针对基本话题模型只能抽取粗粒度上下文信息的问题,通过对潜在狄里克雷分配(LDA)模型进行扩展,建立了一种利用词序信息的多粒度话题情感联合模型(MTSU-Col)。MTSU-Col模型客观表达了词汇、全局/局部话题、情感标签和词序信息之间的关联... 针对基本话题模型只能抽取粗粒度上下文信息的问题,通过对潜在狄里克雷分配(LDA)模型进行扩展,建立了一种利用词序信息的多粒度话题情感联合模型(MTSU-Col)。MTSU-Col模型客观表达了词汇、全局/局部话题、情感标签和词序信息之间的关联关系,使模型中话题和情感的建模更加符合文本的语义表达,有效解决了现有话题、情感分析方法存在的领域依赖问题,从而实现了文本多粒度话题信息和情感倾向信息的同步非监督获取。实验表明:利用MTSU-Col模型对文本进行情感倾向性分类,可使综合评价指标F1值达到84%,整体性能与监督分类方法支持向量机(SVM)类似,均优于未采用词序信息的分析方法。由于挖掘话题集合具有层次化、语义相关的特点,因此MTSU-Col模型对观点挖掘是可行、有效的。 展开更多
关键词 话题模型 文本情感分析 联合模型 词序信息
下载PDF
一种基于联合深度神经网络的食品安全信息情感分类模型 被引量:6
3
作者 刘金硕 张智 《计算机科学》 CSCD 北大核心 2016年第12期277-280,共4页
针对因中文食品安全文本特征表达困难,而造成语义信息缺失进而导致分类器准确率低下的问题,提出一种基于深度神经网络的跨文本粒度情感分类模型。以食品安全新闻报道为目标语料,采用无监督的浅层神经网络初始化文本的词语级词向量。引... 针对因中文食品安全文本特征表达困难,而造成语义信息缺失进而导致分类器准确率低下的问题,提出一种基于深度神经网络的跨文本粒度情感分类模型。以食品安全新闻报道为目标语料,采用无监督的浅层神经网络初始化文本的词语级词向量。引入递归神经网络,将预训练好的词向量作为下层递归神经网络(Recursive Neural Network)的输入层,计算得到具备词语间语义关联性的句子特征向量及句子级的情感倾向输出,同时动态反馈调节词向量特征,使其更加接近食品安全特定领域内真实的语义表达。然后,将递归神经网络输出的句子向量以时序逻辑作为上层循环神经网络(Recurrent Neural Network)的输入,进一步捕获句子结构的上下文语义关联信息,实现篇章级的情感倾向性分析任务。实验结果表明,联合深度模型在食品安全新闻报道的情感分类任务中具有良好的效果,其分类准确率和F1值分别达到了86.7%和85.9%,较基于词袋思想的SVM模型有显著的提升。 展开更多
关键词 联合神经网络模型 多粒度文本特征 词向量 食品安全 情感倾向性分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部