期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于CutMix数据增强与多约束损失函数的YOLOv7盾构隧道渗漏水检测
1
作者 高贤君 刘振宇 +4 位作者 许磊 黄仡凡 谭美淋 熊文豪 杨元维 《测绘通报》 CSCD 北大核心 2024年第7期105-110,共6页
盾构隧道强度投影图像中渗漏水尺寸不一致且像素占比偏小,现有目标检测模型的关键特征学习能力较弱,存在渗漏水病害目标检测精度偏低的问题。本文提出了基于CutMix数据增强与多约束损失函数的改进YOLOv7盾构隧道渗漏水检测方法。首先采... 盾构隧道强度投影图像中渗漏水尺寸不一致且像素占比偏小,现有目标检测模型的关键特征学习能力较弱,存在渗漏水病害目标检测精度偏低的问题。本文提出了基于CutMix数据增强与多约束损失函数的改进YOLOv7盾构隧道渗漏水检测方法。首先采用镶嵌CutMix方法对隧道图像进行数据增强,将多张不同的训练样本进行随机裁剪,拼接融合成具有综合特征的新样本;然后以YOLOv7网络为骨架结构,引入高效通道注意力模块,提高渗漏水关键特征的自主学习与表达能力;最后引入多约束几何条件的损失函数,提高预测框几何形状的精度,从而提升模型预测精度。在光线良好、光线不佳和存在遮挡等复杂环境情况下,选取Fast R-CNN、SSD、YOLOv5、YOLOv7这4种算法进行对比,试验表明,本文算法渗漏水检测精度达85.90%,平均精度比同类算法分别提高5.55%、8.89%、3.93%、2.75%,具有较高的稳健性和泛化能力。 展开更多
关键词 渗漏水检测 ECA 多约束几何条件 盾构隧道 YOLOv7
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部